
Netcool/Impact
Version 6.1.0.1

Solutions Guide

SC23-8834-04

���

Netcool/Impact
Version 6.1.0.1

Solutions Guide

SC23-8834-04

���

Note
Before using this information and the product it supports, read the information in “Notices”.

Edition notice

This edition applies to version 6.1.0.1 of IBM Tivoli Netcool/Impact and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2006, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this publication vii
Intended audience vii
Publications vii

Netcool/Impact library vii
Accessing terminology online vii
Accessing publications online viii
Ordering publications viii

Accessibility viii
Tivoli technical training viii
Support for problem solving ix

Obtaining fixes ix
Receiving weekly support updates ix
Contacting IBM Software Support x

Conventions used in this publication xii
Typeface conventions xii
Operating system-dependent variables and paths xii

Chapter 1. Getting started 1
Software system 1
Development tool. 1

Modeling data 1
Configuring services 1
Writing policies 2

Automation engine 2
Uses 2

Core features 2
Typical implementations 5
Workflow analysis 8

Chapter 2. Solutions 9
Solution components 9

Data models 9
Working with services 9
Policies 9

Solution types 9
Event enrichment solution 9
X events in Y time solution 10
Event notification solution 10
Event gateway solution 10

Setting up a solution 10
Creating a data model 10
Setting up services 11
Creating policies 11

Running a solution 11

Chapter 3. Working with data models 13
Data model components 13

Data sources 13
Data types. 13
Data items. 14
Links 14

Setting up a data model 14
Data model architecture 15
Data model examples 15

Enterprise service model 16

Web hosting model 17

Chapter 4. Working with data sources 19
Data sources overview. 19
Data source categories 19

SQL database data sources 19
LDAP data sources 20
Mediator data sources 20
Internal data repository 20
JMS data source 20

Data source architecture 21
Setting up data sources 21

Getting the connection information 21
Creating data sources 22

Chapter 5. Working with data types . . 23
Data types overview 23
Data type categories 23

SQL database data types 23
LDAP data types 24
Mediator data types 24
Internal data types 24

Data type fields 25
ID 26
Field name 26
Format 26
Display name. 27
Description 27

Data type keys 27
Setting up data types 27

Getting the name of the structural element . . . 27
Configuring internal data types. 28
SQL data types 29
LDAP data types 36
Mediator DSA data types 38

Data type caching 38
Configuring data caching 39
Configuring query caching 39
Count caching 40

Chapter 6. Working with links 41
Links overview 41
Link categories 41
Static links. 41
Dynamic links 41

Link by filter 42
Link by key 42
Link by policy 43

Setting up static links 43
Setting up dynamic links 43

Chapter 7. Working with event sources 45
Event sources overview 45
ObjectServer event sources 45
Non-ObjectServer event sources 45

© Copyright IBM Corp. 2006, 2011 iii

Event source architecture 47
Setting up ObjectServer event sources 47

Chapter 8. Working with services . . . 49
Services overview 49
Predefined services 49
User-defined services 50

Chapter 9. OMNIbus event reader
service. 51
OMINbus event reader architecture 51
OMNIbus event reader process 52

Event querying 52
Event queuing 53

OMNIbus event reader configuration 53
OMNIbus event reader service General Settings
tab 53
OMNIbus event reader service Event Mapping
tab 54
Mappings 56
Event matching 57
Actions 57
Event locking. 57
Event order 58

Chapter 10. Database event listener
service. 59
Setting up the database server 59

Editing the nameserver.props file for the database
client 60
Editing the listener properties file 61
Installing the client files into Oracle 61
Granting database permissions 62

Database event listener service configuration
window 62
Sending database events 63

Creating the call spec 63
Creating triggers. 64

Writing database event policies 75
Handling incoming database events 75
Returning events to the database 76

Chapter 11. OMNIbus event listener
service. 79
Setting up the OMNIbus event listener service . . 79
Using the OMNIbus event listener service 79
Triggers 80
Using the ReturnEvent function 81
Using Spid to control which events get sent over
from OMNIbus 81

Chapter 12. Working with other
services 83
OMNIbus event listener service. 83

Setting up the OMNIbus event listener service . 83
Using the OMNIbus event listener service . . . 83
Triggers 84
Using the ReturnEvent function 85

Policy activator service 85

Policy activator configuration 85
Policy logger service 86

Policy logger configuration 86
Hibernating policy activator service 88

Hibernating policy activator configuration . . . 88
Hibernating policy activator configuration
window 88

Command execution manager service 88
Command execution manager service
configuration window 88

Command line manager service 88
Command line manager service configuration
window 89

Chapter 13. Working with policies . . . 91
Policy language 91
Policy log 91
Policy context 91
Policy scope 91
Printing to the policy log 92
User-defined variables 92
Array 93
Context 95
If statements 96
While statements 97
User-defined functions. 99
Scheduling policies 101

Running policies using the policy activator . . 101
Running policies using schedules. 101

Chapter 14. Handling events 107
Events overview 107
Event containers 107
EventContainer variable 107
Event field variables 107
Event state variables 108
User-defined event container variables 108
Accessing event fields 108

Using the dot notation 108
Using the @ notation 108

Updating event fields 108
Adding journal entries to events 109

Assigning the JournalEntry variable 109
Sending new events 110
Deleting events 110

Examples of deleting an incoming event from
the event source 111

Chapter 15. Handling data 113
Data items 113

Field variables 113
DataItem and DataItems variables 113

Retrieving data by filter 113
Filters 113
Retrieving data by filter in a policy 117

Retrieving data by key 119
Keys 119
Key expressions 119
Retrieving data by key in a policy 120

Retrieving data by link 121

iv Netcool/Impact: Solutions Guide

Links overview 121
Retrieving data by link in a policy 121

Adding data. 122
Example of adding a data item to a data type 123

Updating data 123
Example of updating single data items 124
Example of updating multiple data items . . . 124

Deleting data 125
Example of deleting single data items 125
Example of deleting data items by filter . . . 126
Example of deleting data items by item . . . 126

Calling database functions 126

Chapter 16. Handling hibernations 129
Hibernations overview 129
Hibernating a policy 129

Examples of hibernating a policy 129
Retrieving hibernations 130

Retrieving hibernations by action key search 130
Retrieving hibernations by filter 131

Waking a hibernation. 131
Retrieving the hibernation 131
Calling ActivateHibernation 132
Example 132

Removing hibernations 132

Chapter 17. Sending e-mail 133
Sending e-mail overview 133
Sending an e-mail 133

Chapter 18. Instant messaging 135
Netcool/Impact IM 135
Netcool/Impact IM components 135
Netcool/Impact IM process. 135

Message listening 135
Message sending 135

Setting up Netcool/Impact IM. 136
Writing instant messaging policies 136

Handling incoming messages 136
Sending messages 136
Example 137

Chapter 19. Executing external
commands 139
External command execution overview 139
JRExec server 139

Overview of the JRExec server 139
Starting the JRExec server 139
Stopping the JRExec server 140
The JRExec server configuration properties . . 140
JRExec server logging 140
Running commands using the JRExec server 141

Using CommandResponse 141

Chapter 20. Handling strings and
arrays 143
Handling strings 143

Concatenating strings 143
Finding the length of a string 143

Splitting a string into substrings 144
Extracting a substring from another string. . . 144
Replacing a substring in a string 145
Stripping a substring from a string 145
Trimming white space from a string 145
Changing the case of a string 146
Encrypting and decrypting strings 146

Handling arrays 146
Finding the length of an array. 147
Finding the distinct values in an array 147

Chapter 21. Event enrichment tutorial 149
Tutorial overview 149
Understanding the Netcool/Impact installation . . 149
Understanding the business data 150
Analyzing the workflow. 150
Creating the project 151
Setting up the data model 151

Creating the event source 151
Creating the data sources 152
Creating the data types 153
Creating a dynamic link 153
Reviewing the data model 154

Setting up services 154
Creating the event reader 155
Reviewing the services 155

Writing the policy 155
Looking up device information 155
Looking up business departments 156
Increasing the alert severity 157
Reviewing the policy 158

Running the solution 158

Chapter 22. Configuring the Impact
policy PasstoTBSM 159
Overview. 159
Configuration 159
Exporting and Importing the ForImpactMigration
project. 160
Creating a policy 160
Creating a policy activator service 162
Create a new template and rule to collect weather
data 163
Create the CityHumidity rule for the CityWeather
template 164
Create a city service 165
Customizing a Service Tree portlet 166
Adding a custom Services portlet to a freeform
page 167

Chapter 23. Maintenance Window
Management 169
Activating MWM in a Netcool/Impact cluster . . 169

Configure the MWM_Properties policy 169
Configuring MWMActivator service properties 170
Logging on to Maintenance Window
Management 171
About MWM maintenance windows 171

Contents v

Chapter 24. Event Isolation and
Correlation 175
Overview. 175
Installing Netcool/Impact and the DB2 database 175
Installing the Discovery Library Toolkit. 176
Event Isolation and Correlation policies 177
Event Isolation and Correlation operator views . . 177
Configuring Event Isolation and Correlation data
sources 177
Configuring Event Isolation and Correlation data
types 178
Creating, editing, and deleting event rules. . . . 179

Creating an event rule 179
Configuring WebGUI to add a new launch point 180
Launching the Event Isolation and Correlation
analysis page 180
Viewing the Event Analysis 181

Appendix. Accessibility 183

Glossary 185
A 185

B 185
C 185
D 185
E 186
F 187
G 187
H 187
I. 187
J. 188
K 188
L 188
M 189
N 189
O 189
P 189
S 189
U 191
V 191
W 191
X 191

Index 193

vi Netcool/Impact: Solutions Guide

About this publication

The Solutions Guide contains end-to-end information about using features in
Netcool/Impact.

Intended audience
This publication is for users who are responsible creating Netcool/Impact data
models, writing Netcool/Impact policies and running Netcool/Impact services.

Publications
This section lists publications in the Netcool/Impact library and related
documents. The section also describes how to access Tivoli® publications online
and how to order Tivoli publications.

Netcool/Impact library
v Quick Start Guide, CF39PML

Provides concise information about installing and running Netcool/Impact for
the first time.

v Administration Guide, SC23882904
Provides information about installing, running and monitoring the product.

v User Interface Guide, SC23883004
Provides instructions for using the Graphical User Interface (GUI).

v Policy Reference Guide, SC23883104
Contains complete description and reference information for the Impact Policy
Language (IPL).

v DSA Reference Guide, SC23883204
Provides information about data source adaptors (DSAs).

v Operator View Guide, SC23885104
Provides information about creating operator views.

v Solutions Guide, SC23883404
Provides end-to-end information about using features of Netcool/Impact.

v Integrations Guide, SC27283402
Contains instructions for integrating Netcool/Impact with other IBM® software
and other vendor software.

v Troubleshooting Guide, GC27283302
Provides information about troubleshooting the installation, customization,
starting, and maintaining Netcool/Impact.

Accessing terminology online
The IBM Terminology Web site consolidates the terminology from IBM product
libraries in one convenient location. You can access the Terminology Web site at the
following Web address:

http://www.ibm.com/software/globalization/terminology

© Copyright IBM Corp. 2006, 2011 vii

http://www.ibm.com/software/globalization/terminology

Accessing publications online
Publications are available from the following locations:
v The Quick Start DVD contains the publications that are in the product library.

The format of the publications is PDF, HTML, or both. Refer to the readme file
on the DVD for instructions on how to access the documentation.

v Tivoli Information Center web site at http://publib.boulder.ibm.com/infocenter/
tivihelp/v8r1/topic/com.ibm.netcoolimpact.doc6.1/welcome.html. IBM posts
publications for all Tivoli products, as they become available and whenever they
are updated to the Tivoli Information Center Web site.

Note: If you print PDF documents on paper other than letter-sized paper, set
the option in the File → Print window that allows Adobe Reader to print
letter-sized pages on your local paper.

v Tivoli Documentation Central at http://www.ibm.com/developerworks/wikis/
display/tivolidoccentral/Impact. You can also access publications of the
previous and current versions of Netcool/Impact from Tivoli Documentation
Central.

v The Netcool/Impact wiki contains additional short documents and additional
information and is available at https://www.ibm.com/developerworks/
mydeveloperworks/wikis/home?lang=en#/wiki/Tivoli%20Netcool%20Impact.

Ordering publications
You can order many Tivoli publications online at http://
www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss.

You can also order by telephone by calling one of these numbers:
v In the United States: 800-879-2755
v In Canada: 800-426-4968

In other countries, contact your software account representative to order Tivoli
publications. To locate the telephone number of your local representative, perform
the following steps:
1. Go to http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss.
2. Select your country from the list and click Go.
3. Click About this site in the main panel to see an information page that

includes the telephone number of your local representative.

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully. With this product,
you can use assistive technologies to hear and navigate the interface. You can also
use the keyboard instead of the mouse to operate all features of the graphical user
interface.

For additional information, see “Accessibility,” on page 183.

Tivoli technical training
For Tivoli technical training information, refer to the following IBM Tivoli
Education Web site at http://www.ibm.com/software/tivoli/education.

viii Netcool/Impact: Solutions Guide

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcoolimpact.doc6.1/welcome.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcoolimpact.doc6.1/welcome.html
http://www.ibm.com/developerworks/wikis/display/tivolidoccentral/Impact
http://www.ibm.com/developerworks/wikis/display/tivolidoccentral/Impact
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Tivoli%20Netcool%20Impact
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Tivoli%20Netcool%20Impact
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss
http://www.ibm.com/software/tivoli/education

Support for problem solving
If you have a problem with your IBM software, you want to resolve it quickly. This
section describes the following options for obtaining support for IBM software
products:
v “Obtaining fixes”
v “Receiving weekly support updates”
v “Contacting IBM Software Support” on page x

Obtaining fixes
A product fix might be available to resolve your problem. To determine which
fixes are available for your Tivoli software product, follow these steps:
1. Go to the IBM Software Support Web site at http://www.ibm.com/software/

support.
2. Navigate to the Downloads page.
3. Follow the instructions to locate the fix you want to download.
4. If there is no Download heading for your product, supply a search term, error

code, or APAR number in the search field.

For more information about the types of fixes that are available, see the IBM
Software Support Handbook at http://www14.software.ibm.com/webapp/set2/sas/
f/handbook/home.html.

Receiving weekly support updates
To receive weekly e-mail notifications about fixes and other software support news,
follow these steps:
1. Go to the IBM Software Support Web site at http://www.ibm.com/software/

support.
2. Click the My IBM in the toobar. Click My technical support.
3. If you have already registered for My technical support, sign in and skip to

the next step. If you have not registered, click register now. Complete the
registration form using your e-mail address as your IBM ID and click Submit.

4. The Edit profile tab is displayed.
5. In the first list under Products, select Software. In the second list, select a

product category (for example, Systems and Asset Management). In the third
list, select a product sub-category (for example, Application Performance &
Availability or Systems Performance). A list of applicable products is
displayed.

6. Select the products for which you want to receive updates.
7. Click Add products.
8. After selecting all products that are of interest to you, click Subscribe to email

on the Edit profile tab.
9. In the Documents list, select Software.

10. Select Please send these documents by weekly email.
11. Update your e-mail address as needed.
12. Select the types of documents you want to receive.
13. Click Update.

If you experience problems with the My technical support feature, you can obtain
help in one of the following ways:

About this publication ix

http://www.ibm.com/software/support
http://www.ibm.com/software/support
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www.ibm.com/software/support
http://www.ibm.com/software/support

Online
Send an e-mail message to erchelp@u.ibm.com, describing your problem.

By phone
Call 1-800-IBM-4You (1-800-426-4409).

World Wide Registration Help desk
For word wide support information check the details in the following link:
https://www.ibm.com/account/profile/us?page=reghelpdesk

Contacting IBM Software Support
Before contacting IBM Software Support, your company must have an active IBM
software maintenance contract, and you must be authorized to submit problems to
IBM. The type of software maintenance contract that you need depends on the
type of product you have:
v For IBM distributed software products (including, but not limited to, Tivoli,

Lotus®, and Rational® products, and DB2® and WebSphere® products that run on
Windows or UNIX operating systems), enroll in Passport Advantage® in one of
the following ways:

Online
Go to the Passport Advantage Web site at http://www-306.ibm.com/
software/howtobuy/passportadvantage/pao_customers.htm .

By phone
For the phone number to call in your country, go to the IBM Worldwide
IBM Registration Helpdesk Web site at https://www.ibm.com/account/
profile/us?page=reghelpdesk.

v For customers with Subscription and Support (S & S) contracts, go to the
Software Service Request Web site at https://techsupport.services.ibm.com/ssr/
login.

v For customers with IBMLink, CATIA, Linux, OS/390®, iSeries®, pSeries®,
zSeries®, and other support agreements, go to the IBM Support Line Web site at
http://www.ibm.com/services/us/index.wss/so/its/a1000030/dt006.

v For IBM eServer™ software products (including, but not limited to, DB2 and
WebSphere products that run in zSeries, pSeries, and iSeries environments), you
can purchase a software maintenance agreement by working directly with an
IBM sales representative or an IBM Business Partner. For more information
about support for eServer software products, go to the IBM Technical Support
Advantage Web site at http://www.ibm.com/servers/eserver/techsupport.html.

If you are not sure what type of software maintenance contract you need, call
1-800-IBMSERV (1-800-426-7378) in the United States. From other countries, go to
the contacts page of the IBM Software Support Handbook on the Web at
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html and
click the name of your geographic region for phone numbers of people who
provide support for your location.

To contact IBM Software support, follow these steps:
1. “Determining the business impact” on page xi
2. “Describing problems and gathering information” on page xi
3. “Submitting problems” on page xi

x Netcool/Impact: Solutions Guide

https://www.ibm.com/account/profile/us?page=reghelpdesk
http://www-306.ibm.com/software/howtobuy/passportadvantage/pao_customers.htm
http://www-306.ibm.com/software/howtobuy/passportadvantage/pao_customers.htm
https://www.ibm.com/account/profile/us?page=reghelpdesk
https://www.ibm.com/account/profile/us?page=reghelpdesk
https://www-946.ibm.com/support/servicerequest/relationship/nomination.action
https://www-946.ibm.com/support/servicerequest/relationship/nomination.action
http://www.ibm.com/services/us/index.wss/so/its/a1000030/dt006
http://www.ibm.com/servers/eserver/techsupport.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html

Determining the business impact
When you report a problem to IBM, you are asked to supply a severity level. Use
the following criteria to understand and assess the business impact of the problem
that you are reporting:

Severity 1
The problem has a critical business impact. You are unable to use the
program, resulting in a critical impact on operations. This condition
requires an immediate solution.

Severity 2
The problem has a significant business impact. The program is usable, but
it is severely limited.

Severity 3
The problem has some business impact. The program is usable, but less
significant features (not critical to operations) are unavailable.

Severity 4
The problem has minimal business impact. The problem causes little impact
on operations, or a reasonable circumvention to the problem was
implemented.

Describing problems and gathering information
When describing a problem to IBM, be as specific as possible. Include all relevant
background information so that IBM Software Support specialists can help you
solve the problem efficiently. To save time, know the answers to these questions:
v Which software versions were you running when the problem occurred?
v Do you have logs, traces, and messages that are related to the problem

symptoms? IBM Software Support is likely to ask for this information.
v Can you re-create the problem? If so, what steps were performed to re-create the

problem?
v Did you make any changes to the system? For example, did you make changes

to the hardware, operating system, networking software, and so on.
v Are you currently using a workaround for the problem? If so, be prepared to

explain the workaround when you report the problem.

Submitting problems
You can submit your problem to IBM Software Support in one of two ways:

Online
Click Submit and track problems on the IBM Software Support site at
http://www.ibm.com/software/support/probsub.html. Type your
information into the appropriate problem submission form.

By phone
For the phone number to call in your country, go to the contacts page of
the IBM Software Support Handbook at http://www14.software.ibm.com/
webapp/set2/sas/f/handbook/home.html and click the name of your
geographic region.

If the problem you submit is for a software defect or for missing or inaccurate
documentation, IBM Software Support creates an Authorized Program Analysis
Report (APAR). The APAR describes the problem in detail. Whenever possible,
IBM Software Support provides a workaround that you can implement until the
APAR is resolved and a fix is delivered. IBM publishes resolved APARs on the
Software Support Web site daily, so that other users who experience the same
problem can benefit from the same resolution.

About this publication xi

http://www.ibm.com/software/support/probsub.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html

Conventions used in this publication
This publication uses several conventions for special terms and actions, operating
system-dependent commands and paths, and margin graphics.

Typeface conventions
This publication uses the following typeface conventions:

Bold

v Lowercase commands and mixed case commands that are otherwise
difficult to distinguish from surrounding text

v Interface controls (check boxes, push buttons, radio buttons, spin
buttons, fields, folders, icons, list boxes, items inside list boxes,
multicolumn lists, containers, menu choices, menu names, tabs, property
sheets), labels (such as Tip:, and Operating system considerations:)

v Keywords and parameters in text

Italic

v Citations (examples: titles of publications, diskettes, and CDs
v Words defined in text (example: a nonswitched line is called a

point-to-point line)
v Emphasis of words and letters (words as words example: "Use the word

that to introduce a restrictive clause."; letters as letters example: "The
LUN address must start with the letter L.")

v New terms in text (except in a definition list): a view is a frame in a
workspace that contains data.

v Variables and values you must provide: ... where myname represents....

Monospace

v Examples and code examples
v File names, programming keywords, and other elements that are difficult

to distinguish from surrounding text
v Message text and prompts addressed to the user
v Text that the user must type
v Values for arguments or command options

Operating system-dependent variables and paths
This publication uses the UNIX convention for specifying environment variables
and for directory notation.

When using the Windows command line, replace $variable with %variable% for
environment variables and replace each forward slash (/) with a backslash (\) in
directory paths. The names of environment variables are not always the same in
the Windows and UNIX environments. For example, %TEMP% in Windows
environments is equivalent to $TMPDIR in UNIX environments.

Note: If you are using the bash shell on a Windows system, you can use the UNIX
conventions.

xii Netcool/Impact: Solutions Guide

Chapter 1. Getting started

Netcool/Impact is a set of runnable server components that work together to
provide event management and integration functionality.

Software system
From a software perspective, you can best understand Netcool/Impact as a set of
interrelated, runnable server components, each of which must be installed and
configured separately.

Impact Server
The Impact Server is responsible for managing the data model, running
services, and policies that make up your Netcool/Impact implementation,
and runs the policies in real time in response to events that occur in your
environment.

GUI Server
The GUI Server is responsible for generating the dynamic Web-based user
interface of Netcool/Impact.

For information about installing, configuring, and running these components, see
the Administration Guide.

Development tool
From an implementation perspective, you can understand Netcool/Impact as a
development tool that you use to customize, enhance, and expand the functionality
of an existing Netcool installation.

Netcool/Impact is not an event management or integration solution that is ready
for immediate use. Rather, it is a platform that you can use to build new
functionality into your current installation of the Netcool/Impact product suite.

Because it is a development tool, most of the work that you do with
Netcool/Impact is done during initial setup. You need to understand your
implementation goals and to plan your implementation before you begin. Some of
the development tasks are modelling data, configuring services, and writing
policies.

Modeling data
Modeling data is the task through which you create an abstract representation of
the business data and metadata that you want to use with Netcool/Impact.

This task requires you to be able to identify and locate physical sources of data in
your environment, and to create a representation of this data.

Configuring services
Configuring services is the development task in which you set up the runnable
subcomponents of the Impact Server to perform such operations as monitoring an
ObjectServer for events, or triggering the execution of a policy at timed intervals.

© Copyright IBM Corp. 2006, 2011 1

Writing policies
Writing policies is the task in which you define the operations that you want to
automate with Netcool/Impact.

You write policies using the Impact Policy Language (IPL) or JavaScript and then
configure Netcool/Impact to run them when certain conditions occur in your
environment.

Automation engine
From a real-time operations perspective, you can understand Netcool/Impact as an
automation engine that runs invisibly in the background and does not require
end-user interaction.

This means that once you set up Netcool/Impact, it does not require any
additional management unless you want to change your implementation.

Uses
You can use Netcool/Impact in a wide variety of ways, depending on the needs of
your environment.

One way to determine what you can do with Netcool/Impact is to analyze its core
features and see how you can put together a solution that enhances the value of
your Netcool installation. Another way is to look at typical solutions implemented
by other Netcool users and see how you can adapt them for use in your
environment. Finally, you can also examine the workflow in your network
environment and see what parts of the process can be improved using
Netcool/Impact.

Core features
One way to determine what you can do with Netcool/Impact is to analyze its core
features and see how you can put them to use in your environment.

Some of the most important features of Netcool/Impact are automation, event
source access, data access, integration with other applications, and predefined
actions.

Automation
Automation is the act of setting up a task so that it is performed automatically at
certain times or when certain conditions are met.

For example, you can set a wrist watch to beep once per hour, or once per day at a
certain hour. You might also be able to set a more advanced wrist watch to
monitor your calendar and beep at different times of the day to notify you when
meetings or other appointments are about to occur. In this case, the benefit of
automation is that it saves you the time and effort involved in performing a
routine task over and over. In the wrist watch example, you are saved the time and
effort of constantly looking at your watch to check the time, or having to
continually refer to a calendar to see when your next meeting begins.

A more complicated example of automation is the factory assembly line. As items
move down the assembly line, operations must be performed on them in order for

2 Netcool/Impact: Solutions Guide

the products to be finished. In some situations, these operations are performed by
human workers, who each complete a designated action and pass the items down
the line to the next person.

This example might be effective for a small factory making simple objects with few
users. However, the larger the number of workers you have and the more
complicated the operations, the higher the risk of error is. In addition, the more
items you need to produce, the faster the operations must be accomplished. At
some point, the human workers cannot work fast or well enough.

In the assembly line, automation comes in where you want to take some of the
routine, repeatable parts of the process and set up them up so that they are
performed automatically with a minimum of human intervention. For example,
you might add various clocks, machines and monitors to the process, or even
intelligent robots that can perform some operations previously accomplished by
human workers.

A Netcool operations environment is, in some ways, like a factory assembly line.
Instead of items moving down a conveyer belt, however, you have Netcool alerts.
In a purely manual environment, network operators process each alert by hand. As
they appear in the event list, the operators must acknowledge them, investigate
them, notify other personnel that they have occurred and perform various other
tasks like creating new trouble tickets or work orders in other applications. Finally,
when the alert condition is resolved, the operator must delete the alerts out of the
event list.

For a small network of a few devices and one or two operators, manual processing
of events might be satisfactory. As with the assembly line, however, the more alerts
you have and the more complicated the operator response, the more difficult, and
costly it is to manage the operation on a manual basis.

Like the assembly line, the network operations environment can benefit from
automating certain processes. For example, tasks like notifying technicians or
system administrators when an alert reaches a certain severity, or updating an
event to include related business data can require time and effort on the part of
one or more network operators. If you automate these processes, the operators can
spend time on higher priority tasks or be redeployed to other roles in the business.
This example translates into an event management environment that is less costly
than a manual one and less prone to human error.

Using Netcool/Impact you can automate event management tasks that you would
otherwise have to accomplish manually, or would not be able to accomplish at all.
The framework provided for automations consists of the policy engine, the policy
scripting language and various triggers that you can use to trigger the policies
under different conditions. The policy engine perform the tasks you want to
automate. These tasks are specified in the (IPL) or JavaScript policy scripting
languages, which are programming language similar in syntax to C/C++ and Java.

Event access
Event access is the feature that allows Netcool/Impact to tap into the event stream
that flows from Netcool probes and monitors into the Netcool/OMNIbus
ObjectServer.

This feature is an essential part of most implementations of the product. To see
how and why event access is important, you must first understand the Netcool
event stream and how it is generated.

Chapter 1. Getting started 3

The Netcool event stream is the flow of alerts from Netcool probes and monitors
into the ObjectServer. Each alert represents some status or activity on the network
and can originate from any of hundreds of different kinds of systems, devices, or
applications. Typically, alerts are designed to inform network operators that a fault
condition has occurred somewhere in the environment. They can be used to
communicate other types of status or event information as well.

Alerts themselves are generated by software components called probes and
monitors, which watch the systems, devices or applications and generate the alerts
when various conditions occur. After the probes and monitors generate the alerts,
they are sent to the ObjectServer, where they can be viewed by network operators
through the Netcool/OMNIbus event list.

As noted in the previous section, the network management environment benefits
from automated event management tasks. This automation relies on the ability to
tap into the Netcool event stream.

The framework provided for event access consists of three features: the event
reader, the event listener, and the event processor. These are runnable services that
you control from within Netcool/Impact.

The OMNIbus event reader works by monitoring an instance of the ObjectServer.
When it discovers new or updated events, or discovers that an event has been
deleted, it takes the event and pulls it back into Netcool/Impact for processing.
Similarly, the event listener monitors other, non-ObjectServer sources of events,
such as SQL databases. As with the event reader, it takes new or updated events
when it discovers them and pulls them back to Netcool/Impact. The event
processor is responsible for what happens after the events have been retrieved.

When you set up an event reader or event listener, you define one or more policies
that are to be executed when an event matches a specified criteria. A policy is a set
of instructions for Netcool/Impact that specifies the tasks that you want to
automate. When coupled with the event reader or event listener, you can use a
policy to specify a set of tasks that you want Netcool/Impact to perform
automatically when certain kinds of alerts appear in the ObjectServer or other
events appear in other event sources.

This combination of event access and automation functionality allows you to create
a wide variety of event management solutions. These solutions include event
enrichment, X events in Y time, event notification, and event gateways.

Data access
Data access provides connection to external data sources, such as SQL databases
and LDAP servers.

To understand how this feature is important, you can think about all the ways you
use data that is external to Netcool/OMNIbus in your network management
environment. You might have one database that contains network inventory
information and another database that contains information about billing and
customer service. In addition, you might have an LDAP directory that you use to
store information about the company personnel.

In an environment without Netcool/Impact, it is possible for network operators to
be responsible for manually retrieving data from one or more of these data sources
and using that information to deduce the importance of events or to decide how
events must be handled. With Netcool/Impact, you can integrate this type of data

4 Netcool/Impact: Solutions Guide

directly into alerts at the ObjectServer level or use this data to perform various
types of analysis on the severity or relevance of individual alerts.

The mechanism for accessing data consists of data source adaptors (DSAs) and
data models. At the software component level, DSAs provide the means to connect
to a wide variety of SQL databases, LDAP servers, and other data sources. At the
solution level, the data model is an abstract representation of the data in your
environment. The data model is used within policies when to retrieve, add, update,
and delete data from the data sources.

Third-party integration
In many network operations environments, you have systems in place that have
been created by more than one software provider.

For example, in addition to the Netcool suite of products, you might have separate
third-party applications for network inventory management, billing, problem
tracking, customer service, and help desk. You might also have messaging systems
and other infrastructure software that is not provided by IBM.

Netcool/Impact provides interfaces to a wide array of such third-party
applications, including GE Smallworld, and Portal Infranet. Netcool/Impact can
interface with a wide variety of other applications by interfacing directly with their
underlying databases.

Predefined actions
Netcool/Impact provides a built-in set of predefined actions that you can include
among your automated tasks.

One of the most important of these tasks is the embedded e-mail client software.
You can use this software to send e-mail notifications to administrators and users
when faults or other conditions on your network occur. Another important
predefined action is the ability to run shell commands, scripts, and applications on
local or remote systems.

Typical implementations
Another way to determine what you can do with Netcool/Impact is to look at
typical solutions implemented by other Netcool users and see how you can adapt
them for use in your environment.

The following sections discuss some of the most typical implementations. Other
parts of this guide go into greater detail about these solutions.

Some typical Netcool/Impact solutions are event enrichment, X events in Y time,
event notification, and event gateways.

Event enrichment
Event enrichment is the process by which Netcool/Impact monitors an event
source for new events, looks up information related to them in an external data
source and then adds the information to them.

Event enrichment is the one of the most common, and valuable things that users
achieve with Netcool/Impact.

To understand the value of event enrichment, you must first understand how
Netcool probes work and some of their intrinsic limitations.

Chapter 1. Getting started 5

Netcool probes are runnable software components that you install on the devices
that they monitor. Of probes and monitors, probes are the most common means for
generating alerts in the Netcool event stream. Each probe has a rules file that
specifies how the alert data is formatted and sent to the ObjectServer when certain
activities or status levels on the device occur.

One characteristic of the probe rules file is that it is (essentially) static. This means
that, once you install and configure the probe, the contents of the rules file rarely
change. Not only is change rare, but changing the rules file on the fly to adjust to
the constantly changing parameters of a network environment would be
impossible. As a result, it is difficult to include dynamic information about the
network in the contents of alerts generated by probes.

Another characteristic of the probes rules file is that, generally, it is best to use an
identical copy of the file on every instance of a device that you have in your
inventory. For example, if you have dozens of routers in your network, it is most
likely that you want to use the same rules file for each device. This ensures that
every probe reports activity or status information to the ObjectServer in the same
way and eliminates any complications that might occur if each probe is configured
differently. Because of this, however, the probes are not able to send alerts to the
ObjectServer that contain information specific to the individual device, beyond a
few basic parameters like the host name and IP address.

In addition to these limitations, the scope of alert data provided by a probe is
generally restricted to information that directly describes the alert condition. The
probe cannot provide additional information about how the condition affects the
network as a whole, or perform any sort of analysis or correlation regarding the
alert.

Although these limitations are primarily associated with probes, they exist to some
degree with other Netcool components that generate alert data.

Event enrichment allows you to bypass these and other limitations by combining
the event and data access features of Netcool/Impact. In an event enrichment
scenario, Netcool/Impact "catches" new and updated alerts as they are sent to the
ObjectServer, and then goes to one or more external data sources to correlate
information in the alerts with business data. The Netcool/Impact policy language
provides the means to intelligently determine which data in your environment is
related to the alert and then to add that information to the alert on the fly.

The process of event enrichment can be configured to run completely in the
background, so that the intervention of Netcool/Impact in the event flow is not
noticeable to a network operator.

One simple example of event enrichment is an environment where you are
managing a network of servers, each of which is used by a different department in
the business. In this environment, you use the ping probe to monitor the uptime of
the server systems. If a ping does not reach the target system, the probe sends an
alert to the ObjectServer that says that the server is not reachable.

In an environment without Netcool/Impact, network operators would have to
manually look up the business department associated with the server in order to
deduce the priority of any incoming alert. They might also have to use a separate
calendar or scheduling program to find the on-call administrator responsible for
maintaining the system. With Netcool/Impact, you can "catch" each alert as it

6 Netcool/Impact: Solutions Guide

comes into the ObjectServer, look up the affected business department, and
automatically adjust the severity of the alert accordingly.

In environments with a higher level of complexity and many network devices,
systems, and applications, the need for event enrichment becomes more critical.
This automated process can then be used to supplement Netcool alerts with a wide
variety of topological, technical, contact, and other information.

X events in Y time
X events in Y time is the process in which Netcool/Impact monitors an event
source for groups of events that occur together and takes the appropriate action
based on the event information.

X events in Y time solutions acknowledge the fact that few fault conditions in a
network environment occur in a vacuum. When one device fails, for example, it is
often possible that other parts of the system will also fail, or that the probe that
monitors it will continue to report faults from the device until the problem is
resolved. X events in Y time solutions allow you to "program" Netcool/Impact to
take action when a group of related events occurs within the same time window.

An example of an X events in Y time solution is an environment where you are
monitoring a set of telecommunication switches. A potential fault condition exists
in the environment where a device will cause an alert to appear multiple times in
the same time window as a particular link goes up and down. Taken alone, the
fault is a low priority, but if it occurs more than a dozen or so times within the
same 5 second period, it indicates a continuing problem that needs to be
addressed.

Without Netcool/Impact, a network operator might not be able to detect this fault
condition by simply monitoring the ObjectServer event list, especially if there are
many other devices in the network reporting other status and fault conditions.
With Netcool/Impact, you can define a set of operations that you want to take
place automatically every time this event happens, including increasing the
severity of the alert in order to make sure that it is detected by network operators.

Event notification
Event notification is the process by which Netcool/Impact monitors an event
source for new events and then notifies an administrator or users when a certain
event or combination of events occurs.

A built-in e-mail client is provided that allows you to send mail through any SMTP
server. You can use this feature to send mail notifications to administrators and
other users, or you can use the remote execution feature provided by the JRExec
server to launch an external e-mail program from the command line. You can also
use the JRExec server to send notifications through a paging system that provides
a command-line interface.

Event notification is often part of a more complicated event management
automation.

Event gateways
An event gateway is an implementation of Netcool/Impact in which you send
event information from the ObjectServer to a third-party application for processing.

Chapter 1. Getting started 7

Because Netcool/Impact can interface with so many different types of databases
and other software, you can build event gateways that do not otherwise exist as
part of the Netcool suite.

Workflow analysis
You can determine what you to do with by analyzing the current workflow in
your environment and seeing which parts of your event management process it is
most effective to automate.

Before you analyze the workflow, review the core Netcool/Impact features, and
other concepts and techniques.

8 Netcool/Impact: Solutions Guide

Chapter 2. Solutions

A solution is an implementation of Netcool/Impact that provides a specific type of
event management functionality.

Solution components
The components of a solution are a data model, services, and policies.

Most solutions use a combination of these three components.

Data models
A data model is a model of the business and metadata used in a Netcool/Impact
solution.

A data model consists of data sources, data types, data items, links, and event
sources.

Working with services
Services are runnable components of the Impact Server that you start and stop
using both the GUI and the CLI.

Policies
A policy is a set of operations that you want Netcool/Impact to perform.

These operations are specified using a one of the following programming
languages, JavaScript or a language called the Netcool/Impact policy language, or
IPL.

Solution types
Netcool/Impact allows you to implement a wide variety of solution types. Some
common types are event enrichment, X events in Y time, event notification, and
event gateways.

Event enrichment solution
Event enrichment is the process by which Netcool/Impact monitors an event
source for new events, looks up information related to them in an external data
source and then adds the information to them.

An event enrichment solution consists of the following components:
v A data model that represents the data you want to add to events
v An OMNIbus event reader service that monitors the event source
v One or more event enrichment policies that look up information related to the

events and add the information to them

For a sample event enrichment solution, see Chapter 21, “Event enrichment
tutorial,” on page 149.

© Copyright IBM Corp. 2006, 2011 9

X events in Y time solution
X events in Y time is the process in which Netcool/Impact monitors an event
source for groups of events that occur together and takes the appropriate action
based on the event information.

An X events in Y time solution consists of the following components:
v A data model that contains internal data types used to store metadata for the

solution
v An OMNIbus event reader service that monitors the event source
v The hibernation activator service, which wakes hibernating policies at timed

intervals
v One or more policies that check the event source to see if a specified group of

events is occurring and then take the appropriate action

Event notification solution
Event notification is the process by which Netcool/Impact monitors an event
source for new events and then notifies an administrator or users when a certain
event or combination of events occurs.

Event notification is often part of a more complicated event management
automation that includes aspects of Netcool/Impact functionality.

An event notification solution has the following components:
v An event reader service that monitors the event source
v An e-mail sender service that sends e-mail to administrators or users, or the

JRExec server used to launch an external notification program
v One or more policies that perform the event notification

Event gateway solution
An event gateway is an implementation of Netcool/Impact in which you send
event information from the ObjectServer to a third-party application for processing.

An event gateway solution has the following components
v A data model that includes a data source and data type representing the

third-party application
v An OMNIbus event reader service that monitors the event source
v One or more policies that send event information to the third-party application

Setting up a solution
To set up a Netcool/Impact solution, you create a data model, set up services, and
create policies.

For more information, see “Setting up a solution.”

Creating a data model
While it is possible to design a solution that does not require a data model, almost
all uses of Netcool/Impact require the ability to handle internal or external data of
some sort.

10 Netcool/Impact: Solutions Guide

To create a data model, you create a data source for each real world source of data
that you want to use. Then, you create a data type for each structural element (for
example, a database table) that contains the data you want to use.

Alternatively, you can create dynamic links between data types or static links
between data items that make it easier to traverse the data programmatically from
within a policy.

Setting up services
Different types of solutions require different sets of services, but most solutions
require an OMNIbus event reader.

Solutions that use hibernations also require the hibernating policy activator.
Solutions that receive, or send e-mail require an e-mail reader and the e-mail
sender service.

The first category of services is built in services like the event processor and the
command-line service manager. Netcool/Impact only allows you to have single
instances of this type of service. The second category is services like the event
reader and policy activator. You can create and configure multiple instances of this
type of service.

Creating policies
You create policies in the GUI Server, that contains a policy editor, a syntax
checker, and other tools you need to write, run, test, and debug your policies.

For more information, see Chapter 13, “Working with policies,” on page 91.

Running a solution
To start a solution, you start each of the service components.

Start the components in the following order:
v Hibernating policy activator, e-mail sender, and command execution manager.
v Event processor
v Event reader, event listener, e-mail reader, or policy activator

You can configure services to run automatically at startup, or you can start them
manually using the Tivoli Integrated Portal GUI and CLI. By default, services that
run automatically at startup run in the proper order. If all other services are
already running, starting services like the event processor that trigger policies
effectively starts the solution.

To stop a solution, you stop any services, like the event processor, that trigger your
policies.

Chapter 2. Solutions 11

12 Netcool/Impact: Solutions Guide

Chapter 3. Working with data models

You set up a data model once, when you first design your Netcool/Impact
solution.

After that, you do not need to actively manage the data model unless you change
the solution design. You can view, create, edit, and delete the components of a data
model in the GUI Server.

Data model components
A data model is made up of components that represent real world sources of data
and the actual data inside them.

Data sources
Data sources are elements of the data model that represent real world
sources of data in your environment.

Data types
Data types are elements of the data model that represent sets of data
stored in a data source.

Data items
Data items are elements of the data model that represent actual units of
data stored in a data source.

Links Links are elements of the data model that define relationships between
data types and data items.

Event sources
Event sources are special types of data sources. Each event source
represents an application that stores and manages events.

Data sources
Data sources are elements of the data model that represent real world sources of
data in your environment.

These sources of data include third-party SQL databases, LDAP directory servers,
or other applications such as messaging systems and network inventory
applications.

Data sources contain the information that you need to connect to the external data.
You create a data source for each physical source of data that you want to use in
your Impact solution. When you create an SQL database, LDAP, or Mediator data
type, you associate it with the data source that you created. All associated data
types are listed under the data source in the Data Sources and Types task pane.
When you create a data type, you simply select the data source it must use.

Data types
Data types are elements of the data model that represent sets of data stored in a
data source.

The structure of data types depends on the category of data source where it is
stored. For example, if the data source is an SQL database, each data type

© Copyright IBM Corp. 2006, 2011 13

corresponds to a database table. If the data source is an LDAP server, each data
type corresponds to a type of node in the LDAP hierarchy.

Data items
Data items are elements of the data model that represent actual units of data stored
in a data source.

The structure of this unit of data depends on the category of the associated data
source. For example, if the data source is an SQL database data type, each data
item corresponds to a row in a database table. If the data source is an LDAP
server, each data item corresponds to a node in the LDAP hierarchy.

Links
Links are elements of the data model that define relationships between data types
and data items.

Static links define relationships between data items, and dynamic links define
relationships between data types. Links are an optional component of the
Netcool/Impact data model.

Setting up a data model
To set up a data model, you must first determine what data you need to use in
your solution and where that data is stored. Then, you create a data source for
each real world source of data and create a data type for each structural element
that contains the data you need.

Procedure
1. Create data sources

Identify the data you want to use and where it is stored. Then, you create one
data source for each real world source of data. For example, if the data is
stored in one MySQL database and one LDAP server, you must create one
MySQL and one LDAP data source.

2. Create data types
After you have set up the data sources, you create the required data types. You
must create one data type for each database table (or other data element,
depending on the data source) that contains data you want to use. For example,
if the data is stored in two tables in an Oracle database, you must create one
data type for each table.

3. Optional: Create data items
For most data types, the best practice is to create data items using the native
tools supplied by the data source. For example, if your data source is an Oracle
database, you can add any required data to the database using the native
Oracle tools. If the data source is the internal data repository, you must create
data items using the GUI.

4. Optional: Create links
After you create data types, you can define linking relationships between them
using dynamic links. You can also define linking relationships between internal
data items using static links. That makes it easier to traverse the data
programmatically from within a policy. Use of links is optional.

5. Create event sources

14 Netcool/Impact: Solutions Guide

Most process events are retrieved from a Netcool/OMNIbus ObjectServer. The
ObjectServer is represented in the data model as an event source.

Data model architecture
This diagram shows the relationship between data sources, data types, and data
items in a Netcool/Impact solution.

Data model examples
The examples provided here are, most likely, scaled down versions of data models
you might be required to implement in the real world.

They are designed to give you an idea of how all the different parts of a data
model work together, rather than provide a realistic sampling of every type of data
you might access with Netcool/Impact.

If you are uncertain about the definition of major concepts mentioned in these
examples, such as data sources or data types, you can skip ahead to the next four
chapters of this book, which provide detailed information about the various
components of the data model. Once you have a better understanding of these
concepts, you can return to this section.

Figure 1. Data Model Architecture

Chapter 3. Working with data models 15

Enterprise service model
The enterprise service model is a data model that is designed for use in an
enterprise service environment.

The enterprise service environment is one of the most common network
management scenarios for the Netcool product suite. While the data model
described in this section is relatively simple, real world enterprise environments
can often rival a small telecommunications or ISP environment in complexity.

The goal of the data model in this example is to provide the means to access a set
of business data that has been previously collected and stored in an external
database. This business data contains information about the users, departments,
locations, and servers in the enterprise. If you were designing a complete solution
for this environment, you would tap into this data model from within policies
whenever you needed to access this data.

The enterprise service environment in this example consists of 125 users in five
business departments, spread over three locations. Each user in the environment
has a desktop computer and uses it to connect to a file server and an e-mail server.

The solution proposed to manage this environment is designed to monitor the file
servers and e-mail servers for uptime. When a file server goes down, it notifies the
on-call administrator through e-mail with a service request message. It also
determines which business units are served by the file server and sends an e-mail
to each user in the unit with a service interruption message. When an e-mail server
goes down, it notifies the on-call administrator through pager.

All the data used by this solution is stored in a MySQL database. This database
has six tables, named USER, ADMIN, DEPT, LOC, FILESERVER, and EMAILSERVER.

Enterprise service model elements
The enterprise service model consists of data sources, data types, data items, links,
and event sources.

Data sources
Because all the data needed is stored in a single MySQL database, this data
model only requires one data source. For the purposes of this example, the
data source is named MYSQL_01.

Data types
Each table in the MYSQL database is represented by a single SQL database
data type. For the purposes of this example, the data types are named
User, Admin, Department, Location, Fileserver, and Emailserver. In this
case, the names of the data types are the same as the table names.

Data items
Because the data is stored in an SQL database, the data items in the model
are rows in the corresponding database tables.

Links The relationship between the data types in this data model can be
described as a set of the following dynamic links:
v User -> Department
v User -> Location
v Location -> Emailserver
v Department -> Fileserver
v Emailserver -> Location.

16 Netcool/Impact: Solutions Guide

v Fileserver -> Departments
v Administrator -> Location

Event sources
This data model has a single event source, which represents the
Netcool/OMNIbus ObjectServer that stores events related to activity in
their environment.

Web hosting model
The Web hosting model is a data model designed for use in a Web hosting
environment.

The Web hosting environment is another common network management scenario
for the Netcool product suite. Managing a Web hosting environment presents some
unique challenges. This is because it requires you to assure the uptime of services,
such as the availability of customer Web sites, that consist of groups of interrelated
software and hardware devices, in addition to assuring the uptime of the devices
themselves. As with the other examples in this chapter, the web services hosting
environment described here is scaled down from what you might encounter in the
real world.

The goal of the data model in this example is to provide the means to access a set
of device inventory and service management data that is generated and updated in
real time by a set of third-party application. This data contains information about
the server hardware located in racks in the hosting facility and various other data
that describes how instances of HTTP and e-mail server software is installed and
configured on the hardware. As with the previous example, policies developed for
use with this information would tap into this data model whenever they needed to
access this data.

The Web services hosting model in this example consists of 10 HTTP server
clusters and three e-mail servers clusters, spread over 20 machines. Each HTTP
cluster and each e-mail cluster consist of one primary and one backup server. This
environment serves 15 customers whose use is distributed across one or more
clusters depending on their service agreement.

The solution that manages this environment is designed to monitor the uptime of
the HTTP and e-mail services. When a problem occurs with one of these services,
it determines the identity of the cluster that is causing the problem and the
hardware where the component server instances are installed. It then modifies the
original alert data in Netcool/OMNIbus to reflect this information. This solution
also determines the customer that is associated with the service failure and sets the
priority of the alert to reflect the customer's service agreement.

The data in this model is stored in two separate Oracle databases. The first
database has five tables named Node, HTTPInstance, HTTPCluster, EmailInstance,
and EmailCluster. The second database is a customer service database that has,
among other tables, one named Customer.

Web hosting model elements
The Web hosting model consists of data sources, data types, data items, and links.

Data sources
Because this model has two real world sources of data, it requires two data
sources. For this example, these sources are called ORACLE_01 and
ORACLE_02.

Chapter 3. Working with data models 17

Data types
Each table in the MySQL database is represented by a single SQL database
data type. For the purposes of this example, the data types are named
Node, HTTPInstance, HTTPCluster, EmailInstance, EmailCluster, and
Customer.

Data items
Because the data is stored in an SQL database, the data items in the model
are rows in the corresponding database tables.

Links The relationship between the data types in this data model can be
described as a set of the following dynamic links:
v HTTPServer -> Node
v EmailServer -> Node
v HTTPServer -> HTTPCluster
v EmailServer -> EmailCluster
v Customer -> HTTPCluster
v Customer -> HTTPServer

18 Netcool/Impact: Solutions Guide

Chapter 4. Working with data sources

A data source is an element of the data model that represents a real world source
of data in your environment.

Data sources overview
Data sources provide an abstract layer between Netcool/Impact and real world
source of data.

Internally, data sources provide connection and other information that
Netcool/Impact uses to access the data. When you create a data model, you must
create one data source for every real world source of data you want to access in a
policy.

The internal data repository of Netcool/Impact can also be used as a data source.

Data source categories
Netcool/Impact supports four categories of data sources.

SQL database data sources
An SQL database data source represents a relational database or another
source of data that can be accessed using an SQL database DSA.

LDAP data sources
The LDAP data source represent LDAP directory servers.

Mediator data sources
Mediator data sources represent third-party applications that are integrated
with Netcool/Impact through the DSA Mediator.

JMS data sources
A JMS data source abstracts the information that is required to connect to a
JMS Implementation.

SQL database data sources
An SQL database data source represents a relational database or another source of
data that can be accessed using an SQL database DSA.

Most commonly used commercial relational databases are supported, such as
Oracle, Sybase, and Microsoft SQL Server. In addition, freely available databases
like MySQL, and PostgreSQL are also supported. The Netcool/OMNIbus
ObjectServer is also supported as a SQL data source.

The configuration properties for the data source specify connection information for
the underlying source of data. Some examples of SQL database data sources are:
v A DB2 database
v A MySQL database
v An application that provides a generic ODBC interface
v A character-delimited text file

© Copyright IBM Corp. 2006, 2011 19

You create SQL database data sources using the GUI. You must create one such
data source for each database that you want to access. When you create an SQL
database data source, you need to specify such properties as the host name and
port where the database server is running, and the name of the database. For the
flat file DSA and other SQL database DSAs that do not connect to a database
server, you must specify additional configuration properties.

Note that SQL database data sources are associated with databases rather than
database servers. For example, an Oracle database server can host one or a dozen
individual databases. Each SQL database data source can be associated with one
and only one database.

LDAP data sources
The LDAP data source represent LDAP directory servers.

Netcool/Impact supports the OpenLDAP, and Microsoft Active Directory servers.

You create LDAP data sources in the GUI Server. You must create one such data
source for each LDAP server that you want to access. The configuration properties
for the data source specify connection information for the LDAP server, and any
required security or authentication information.

Mediator data sources
Mediator data sources represent third-party applications that are integrated with
Netcool/Impact through the DSA Mediator.

These data sources include a wide variety of network inventory, network
provisioning, and messaging system software. In addition, providers of XML and
SNMP data can also be used as mediator data sources.

Typically Mediator DSA data sources and their data types are installed when you
install a Mediator DSA. The data sources are available for viewing and, if
necessary, for creating or editing.

Attention: For a complete list of supported data source, see your IBM account
manager.

Internal data repository
The internal data repository is a built-in data source for Netcool/Impact.

The primary responsibility of the internal data repository is to store system data.

Restriction: You must use internal data types solely for testing and demonstrating
Netcool/Impact, or for low load tasks.

JMS data source
A JMS data source abstracts the information that is required to connect to a JMS
Implementation.

This data source is used by the JMSMessageListener service, and the
SendJMSMessage, and ReceiveJMSMessage functions.

20 Netcool/Impact: Solutions Guide

Data source architecture
This diagram shows the relationship between Netcool/Impact, data sources, and
the real world source of data in your environment.

Setting up data sources
When you create a Netcool/Impact data model, you must set up a data source for
each real world source of data in your environment.

You set up data sources using the Tivoli Integrated Portal GUI. To set up a data
source, you need to get the connection information for the data source, and then
use the GUI to create and configure the data source.

Getting the connection information
Before you create an event source, you must get the connection information for the
underlying application.

Figure 2. Data Source Architecture

Chapter 4. Working with data sources 21

The connection information you need varies depending on the type of event
source. For most SQL database data sources, this information is the host name and
the port where the application is running, and a valid user name and password.
For LDAP and Mediator data sources, see the DSA Reference Guide for the
connection information required.

When you have the connection information for the underlying application, you can
create the data source using the Tivoli Integrated Portal GUI.

Creating data sources
Use this procedure to create a user-defined data source.

Procedure
1. In the navigation tree, expand System Configuration > Event Automation click

Data Model to open the Data Model tab.
2. From the Cluster and Project lists, select the cluster and project you want to

use.
3. In the Data Model tab, click the New Data Source icon in the toolbar. Select a

template for the data source that you want to create. The tab for the data
source opens.

4. Complete the required information, and click Save to create the data source.

22 Netcool/Impact: Solutions Guide

Chapter 5. Working with data types

Data types are an element of the data model that represent sets of data stored in a
data source.

Data types overview
Data types describe the content and structure of the data in the data source table
and summarize this information so that it can be accessed during the execution of
a policy.

Data types provide an abstract layer between Netcool/Impact and the associated
set of data in a data source. Data types are used to locate the data you want to use
in a policy. For each table or other data structure in your data source that contains
information you want to use in a policy, you must create one data type. To use a
data source in policies, you must create data types for it.

Attention: Some system data types are not displayed in the GUI. You can manage
these data types by using the Command Line Interface (CLI).

The structure of the data that is stored in a data source depends on the category of
the data source where the data is stored. For example, if the data source is an SQL
database, each data type corresponds to a database table. If the data source is an
LDAP server, each data type corresponds to a type of node in the LDAP hierarchy.

A data type definition contains the following information:
v The name of the underlying table or other structural element in the data source
v A list of fields that represent columns in the underlying table or another

structural element (for example, a type of attribute in an LDAP node)
v Settings that define how Netcool/Impact caches data in the data type

Data type categories
Netcool/Impact supports four categories of data types.

SQL database data types
SQL database data types represent data stored in a database table.

LDAP data types
LDAP data types represent data stored at a certain base context level of an
LDAP hierarchy.

Mediator data types
Mediator data types represent data that is managed by third-party
applications such as a network inventory manager or a messaging service.

Internal data types
You use internal stored data types to model data that does not exist, or
cannot be easily created, in external databases.

SQL database data types
SQL database data types represent data stored in a database table.

© Copyright IBM Corp. 2006, 2011 23

Each data item in an SQL database data type corresponds to a row in the table.
Each field in the data item corresponds to a column. An SQL database data type
can include all the columns in a table or just a subset of the columns.

LDAP data types
LDAP data types represent data stored at a certain base context level of an LDAP
hierarchy.

Each data item in an LDAP data type corresponds to an LDAP node that exists at
that level and each field corresponds to an LDAP attribute. LDAP data types are
read-only, which means that you cannot add, update or delete data items in an
LDAP data type.

Mediator data types
Mediator data types represent data that is managed by third-party applications
such as a network inventory manager or a messaging service.

Typically, Mediator data types do not represent data stored in database tables.
Rather, they represent collections of data that are stored and provided by the data
source in various other formats. For example, sets of data objects or as messages.

These data types are typically created using scripts or other tools provided by the
corresponding DSA. For more information about the mediator data types used
with a particular DSA, see the DSA Reference Guide.

Internal data types
You use internal stored data types to model data that does not exist, or cannot be
easily created, in external databases.

This includes working data used by policies, which can contain copies of external
data or intermediate values of data. This data is stored directly in a data repository,
and you can use it as a data source. To create and access this data you define
internal data types.

Netcool/Impact provides the following categories of internal data types:

System data types
System data types are used to store and manage data used internally by
Netcool/Impact.

Predefined internal data types
Pre-defined data types are special data types that are stored in the global
repository.

User-defined internal data types
Internal data types that you create are user-defined internal data types.

Restriction: Use internal data types only for prototyping and demonstrating
Netcool/Impact.

System data types
System data types are used to store and manage data used internally by
Netcool/Impact.

These types include Policy, Service, and Hibernation. In most cases, you do not
directly access the data in these data types. However, there are some occasions in

24 Netcool/Impact: Solutions Guide

which you can use them in a policy. Some examples are when you start a policy
from within another policy or work with hibernating policies.

Predefined internal data types
Pre-defined data types are special data types that are stored in the global
repository.

The following predefined internal data types are provided:
v Schedule

v TimeRangeGroup

v Document

You use Schedule and TimeRangeGroup data types to manage Netcool/Impact
scheduling. You can use the Document data type to store information about URLs
located on your intranet.

Predefined data types are special data types that are stored in Netcool/Impact. The
non-editable pre-defined data types are:
v TimeRangeGroup
v LinkType
v Hibernation

The following predefined data types can be edited to add new fields:
v Schedule
v Document
v FailedEvent
v ITNM

Restriction: You cannot edit or delete existing fields. None of the pre-defined data
types can be deleted.

User-defined internal data types
Internal data types that you create are user-defined internal data types.

The data items in these data types are stored in the internal data repository, rather
than in an external data source. User-defined data types function in much the same
way as SQL database data types. You must use internal data types solely for
testing and demonstrating Netcool/Impact, or for low load tasks. User-defined
internal data types are slower than external SQL database data types.

Data type fields
A field is a unit of data as defined within a data type. The nature of this unit of
data depends on the category of the data type that contains it.

If the data type corresponds to a table in an SQL database, each field corresponds
to a table column. If the data type corresponds to a base context in an LDAP
server, each field corresponds to a type of LDAP attribute.

When you set up an SQL database data type, the fields are auto-populated from
the underlying table by Netcool/Impact. For other data types, you must manually
define the fields when the data type is created.

Chapter 5. Working with data types 25

ID
The ID attribute specifies the internal name used by Netcool/Impact to refer to the
field.

By default, the field ID is the same as the name of the data element that
corresponds to the field in the underlying data source. For example, if the data
type is an SQL database data type, the underlying field corresponds to a column in
the table. By default, the field ID is the same as the column name in the database.

You can change the field ID to any other unique name. For example, if the
underlying column names in the data source are not human-readable, or are
difficult to type and remember, you can use the ID field to provide a more
easy-to-use alias for the field.

The field ID overrides the actual name and display name attributes for the field in
all cases.

Field name
The field name attribute is the name of the corresponding data element in the
underlying data source.

Although the Tivoli Integrated Portal GUI allows you to freely edit this field, it
must be identical to how it appears in the data source in order to work. Otherwise,
an error when trying to access the data type will be reported.

Format
The format is the data format of the field.

For SQL database data types, Netcool/Impact auto-discovers the columns in the
underlying table and automatically deduces the data format for each field when
you set up the data type. For other data types, you must manually specify the
format for each field that you create.

Table 1 shows the supported data formats:

Table 1. Supported data formats

Format Description

STRING Represents text strings up to 4 KB in length.

INTEGER Represents whole numbers.

LONG Represents long whole numbers.

FLOAT Represents floating point decimal numbers.

DOUBLE Represents double-precision floating point decimal numbers.

DATE Represents formatted date/time strings.

BOOLEAN Represents Boolean values of true and false.

CLOB Represents large-format binary data.

LONG_STRING Represents text strings up to 16 KB in length (internal data
types only).

PASSWORD_STRING Represents password strings (internal data types only). The
password appears in the GUI as a string of asterisks, rather
than the actual password text.

26 Netcool/Impact: Solutions Guide

Display name
The display name attribute allows you to specify a label for the field that is
displayed only when you browse data items in the GUI. This attribute does not
otherwise affect the functionality of the data type.

You can use this field to select a field from the menu to label data items according
to the field value. Choose a field that contains a unique value that can be used to
identify the data item for example, ID. To view the values on the data item you
need to go to View Data Items for the data type and select the Links icon. Click
the data item to display the details.

Description
The description attribute allows you to specify a short description for the field.

This description is only visible when you edit the data type using the GUI. Like
the display name, it does not otherwise affect the functionality of the data type.

Data type keys
Key fields are fields whose value or combination of values can be used to identify
unique data items in a data type.

For SQL database data types, you must specify at least one key field for each data
type you create. Most often, the key field that you specify is a key field in the
underlying data source. Internal data items contain a default field named KEY that
is automatically used as the data type key.

You can use the policy function called GetByKey to retrieve data from the data type
using the key field value as a query condition. Keys are also used when you create
GetByKey dynamic links between data types.

Setting up data types
When you create a data model, you must set up a data type for each structural
element in a data source whose data you want to use.

For example, if you are using an SQL database data source, you must set up a data
type for each table that contains the data. If you are using an LDAP data source,
you must set up a data type for each base context in the LDAP hierarchy that
contains nodes that you want to access. You set up data types using the Tivoli
Integrated Portal GUI.

To set up a data type, you get the name of the structural element (for example, the
table) where the data is located, and then use the GUI to create and configure the
data type.

Getting the name of the structural element
If the data type is an SQL database data type, you must know the fully qualified
name of the underlying table in the database before you can set it up.

This name consists of the database name and the table name. Some databases use
case-sensitive table names, so make sure that you record the proper case when you

Chapter 5. Working with data types 27

get this information. If the data type is an LDAP data type, you must know the
name of the base context level of the LDAP hierarchy where the nodes you want to
access are located.

Configuring internal data types
This procedure uses an Administrator internal data type as an example.

About this task

To define the data type for Administrator, you specify the attributes (fields) that
you want listed for every administrator, perhaps a name, a pager number, and an
e-mail address. Then you create data items: the names, pager numbers, and e-mail
addresses of the administrators. For internal data types, these attributes are the
actual data items for the data type.

Procedure
1. In the navigation tree, expand System Configuration > Event Automation >

Data Model, to open the Data Model tab.
Since internal data is stored in Netcool/Impact, it is not necessary to first
configure a data source connection.

2. Select the data source that you want to create a data type for, right-click the
data source and click New Data Type .

3. Enter the information in the Custom Fields tab General Settings section.
Click Save.

4. To add additional fields to the data type:
a. In the Additional Fields section of the tab, click the New button.
b. Enter the information in the window.
c. Continue to add fields to the table as appropriate.
d. From the Display Name Field list situated under the Additional Fields

table, you can select a field name that you want to use to name a data item
elsewhere in the GUI.

e. When you are finished, click Save in the editor toolbar.
5. In the Dynamic Links tab configure dynamic links. For information about

dynamic links tab, see the section on“Links” on page 14.

Internal data type configuration window
Use this information to configure an internal data type.

Table 2. New Internal Data Type Editor Custom Fields tab

Editor element Description

General settings

Data Type Name Type a unique name to identify the data type. Only letters,
numbers, and the underscore character must be used in the data
type name. If you use UTF-8 characters, make sure that the
locale on the Impact Server where the data type is saved is set to
the UTF-8 character encoding.

If you receive an error message when saving a data type, check
the Global tab for a complete list of data type names for the
server. If you find the name you have tried to save, you need to
change it.

28 Netcool/Impact: Solutions Guide

Table 2. New Internal Data Type Editor Custom Fields tab (continued)

Editor element Description

State: Persistent Leave the box checked as Persistent (permanent) to permanently
store the data items created for this data type. When the server
is restarted, the data is loaded. If the box is cleared, the data is
held in memory, but only while the server is running. When the
server restarts, the data is lost because it was not backed up in a
file. This feature is useful if you need data only on a temporary
basis and then want to discard it.

Persistent data types are always written to file. Therefore making
internal data types temporary is faster.

New Field Click to add a new field to the table.

Additional fields (New Field window)

ID Type a unique ID for the field.

Field Name Type the actual field name. This can be the same as the ID. You
can reference both the ID field and the Field Name field in
policies.

If you do not enter a Display Name (see below), Netcool/Impact
uses the ID field name by default.

Format Select a format for the field from the Format list:

Display Name Field: You can use this field to select a field from the menu to label
data items according to the field value. Choose a field that
contains a unique value that can be used to identify the data
item for example, ID. To view the values on the data item you
need to go to View Data Items for the data type and select the
Links icon. Click the data item to display the details.

Description Type some text that describes the field.

SQL data types
SQL data types define real-time dynamic access to data in tables in a specified SQL
database.

When the database is accessed, the fields from the database schema are assigned to
the data type. Some of the SQL data sources automatically discover the fields in
the table. Others do not support automatic table discovery; for these data sources,
you must enter the table name to see the names of the fields.

The editor contains three tabs.

Table 3. External data type editor tabs

Tab Description

Table
Description

Name the data type, change the data source, if necessary, and add any
number of fields from the data source to form a database table.

Dynamic Links In this tab you can create links to other data types, both external and
internal, to establish connections between information.

Links between individual data items can represent any relationship
between the items that policies must be able to look up. For example, a
node linked to an operator allows a policy to look up the operator
responsible for the node.

For more information about dynamic links tab, see “Links” on page 14.

Chapter 5. Working with data types 29

Table 3. External data type editor tabs (continued)

Tab Description

Cache Settings In this tab, you can set up caching parameters to regulate the flow of
data between Netcool/Impact and the external data source.

Use the guidelines in “SQL data type configuration window - Cache
settings tab” on page 34, plus the parameters for the performance report
for the data type to configure data and query caching.

Important: SQL data types in Netcool/Impact require all columns in a database
table to have the Select permission enabled to allow discovery and to enable the
save option when creating data types.

Configuring SQL data types
Use this procedure to configure an SQL data type.

Procedure
v Provide a unique name for the data type.
v Specify the name of the underlying data source for the data type.
v Specify the name of the database and the table where the underlying data is

stored.
v Auto-populate the fields in the data type.
v Select a display name for the data type.
v Specify key fields for the data type.
v Optional: Specify a data item filter.
v Optional: Specify which field in the data type to use to order data items.
v Optional: Specify the direction to use when ordering data items.

What to do next

After you have saved the data type, you can close the Data Type Editor or you can
configure caching and dynamic links for the data type.

SQL data type configuration window - Table Description tab
Use this information to configure the SQL data type.

Table 4. New External Data Type editor - Table Description tab

Editor element Description

General Settings

Data Type Name Type a unique name to identify the data type. Only letters,
numbers, and the underscore character must be used in the
data type name. If you use UTF-8 characters, make sure that
the locale on the Impact Server where the data type is saved
is set to the UTF-8 character encoding.

Data type names must be unique globally, not just within a
project. If you receive an error message when saving a data
type, check the Global project tab for a complete list of data
type names for the server. If you find the name you have
tried to save, you need to change it.

30 Netcool/Impact: Solutions Guide

Table 4. New External Data Type editor - Table Description tab (continued)

Editor element Description

Data Source: Name This field is automatically populated, based on the data
source you selected in the Data Sources and Types task pane.
However, if you have other SQL data sources configured to
use with Netcool/Impact, you can change the name to any
of the SQL data sources in the list, if necessary.

If you enter a new name, a message window prompts you to
confirm your change.

Click OK to confirm the change. If you change your mind
about selecting a different data source, click Cancel.

State: Enabled Leave the State check box checked to activate the data type
so that it is available for use in policies.

Table Description

Base Table Specify the underlying database and table where the data in
the data type is stored.

The names of all the databases and tables are automatically
retrieved from the data source so that you can choose them
from a list.

Type the name of the database and the table in the Base
Table lists. The first list contains the databases in the data
source. The second list contains the tables in the selected
database, for example, alerts, and status.

Refresh Click Refresh to populate the table.

The table columns are displayed as fields in a table. To make
database access as efficient as possible, delete any fields that
are not used in policies.

Add Deleted Fields If you have deleted fields from the data type that still exist
in the SQL database, these fields do not show in the user
interface. To restore the fields to the data type, mark the
Add Deleted Fields check box and click Refresh.

New Field Use this option if you need to add a new field to the table
from the data source database. For example, in the case
where the field was added to the database after you created
the data type.

Make sure that the field name you add has the same name
as the field name in the data source.
Important: Any new fields added to this table are not
automatically added to the data source table. You cannot
add fields to the database table in this way.

For more information, see “SQL data type configuration
window - adding and editing fields in the table” on page 32.

Chapter 5. Working with data types 31

Table 4. New External Data Type editor - Table Description tab (continued)

Editor element Description

Key field Key fields are used when you retrieve data from the data
type in a policy using the GetByKey function. They are also
used when you define a GetByKey dynamic link.
Important: You must define at least one key field for the
data type, even if you do not plan to use the GetByKey
functionality in your policy. If you do not, Netcool/Impact
will not function properly.

Generally, the key fields you define correspond to key fields
in the underlying database table.

To specify a key field, click the check box in the appropriate
row in the Key Field column. You can add multiple key
fields.

Display Name Field You can use this field to select a field from the menu to label
data items according to the field value. Choose a field that
contains a unique value that can be used to identify the data
item for example, ID. To view the values on the data item
you need to go to View Data Items for the data type and
select the Links icon. Click the data item to display the
details.

Automatically Remove
Deleted Fields

Mark the Automatically Remove Deleted Fields check box
to remove any fields from the data type that have already
been removed from the SQL database. This happens
automatically when a policy that uses this data type is run.

Data Filtering and Ordering

Filter Type a restriction clause to limit the types of data items seen
for the data type. For example, to limit the rows in a field
called City to New York, you would enter:

City = "New York"

For example, to limit the rows to the New York or Athens,
you would enter:

City = "New York" OR City = "Athens"

You can use any sql Where clause syntax.

Order By Enter the names of one or more fields to use when sorting
data items retrieved from the data source.

SQL data type configuration window - adding and editing fields
in the table
Use this information to add or edit a field to the table for a SQL data type.

In the Table tab, in the New Field area, click New to add a field to the data type,
or select the edit icon next to an existing field that you want to edit.

Table 5. External Data Type Editor - New Field window

Window element Description

ID By default, the ID is the same as the column name in the database.
You can change it to any other unique name. For example, if the
underlying column names in the data source are difficult to use, the
ID field to provide an easier alias for the field.

32 Netcool/Impact: Solutions Guide

Table 5. External Data Type Editor - New Field window (continued)

Window element Description

Field Name Type a name that can be used in policies. It represents the name in
the SQL column. Type the name so that it is identical to how it
appears in the data source; otherwise, Netcool/Impact reports an
error when trying to access the data type.

Format For SQL database data types, Netcool/Impact auto-discovers the
columns in the underlying table and automatically detects the data
format for each field when you set up the data type. For other data
types, you must manually specify the format for each field that you
create. For more information about formats, see the Working with
Data Types chapter in the Solutions Guide.

Select a format from the following list:

v STRING

v LONG_STRING

v INTEGER

v PASSWORD_STRING

v LONG

v FLOAT

v DOUBLE

v DATE

v BOOLEAN

v CLOB

Display Name You can use this field to select a field from the menu to label data
items according to the field value. Choose a field that contains a
unique value that can be used to identify the data item for
example, ID. To view the values on the data item you need to go to
View Data Items for the data type and select the Links icon. Click
the data item to display the details.

If you do not enter a display name, Netcool/Impact uses the ID
field name by default.

Description Type some text that describes the field. This description is only
visible when you edit the data type using the GUI.

Default Value Type a default expression for the field. It can be any value of the
specified format see the format row, or it can be a database-specific
identifier such as an Oracle pseudonym; for example,
sequence.NEXTVAL.

Chapter 5. Working with data types 33

Table 5. External Data Type Editor - New Field window (continued)

Window element Description

Insert Statements:
Exclude this field

When you select the Exclude this Field check box Netcool/Impact
does not set the value for the field when inserting and updating a
new data item into the database. This field is used for insert and
update statements only, not for select statements.

Sybase data types:

You must select this option when you map a field to an Identity
field or a field with a default value in a Sybase database.
Otherwise, Netcool/Impact overwrites the field on insert with the
specified value or with a space character if no value is specified.

ObjectServer data types:

The Tally field automatically selects the Exclude this Field check
box to be excluded from inserts and updates for the objectserver
data type since this field is automatically set by Netcool® OMNIbus
to control deduplication of events.

The Serial field automatically selects the Exclude this Field check
box to be excluded from inserts and updates when an ObjectServer
data type points to alerts.status.

Type Checking:
Strict

Click to enable strict type checking. When you enable strict type
checking on the field, Netcool/Impact checks the format of the
value of the field on insert or update to ensure that it is of the same
format as the corresponding field in the data source. If it is not the
same, Netcool/Impact does not perform the insert or update and a
message to that effect is displayed in the server log. If you do not
enable strict type checking, all type checking and format
conversions are done at the data source level.

SQL data type configuration window - Cache settings tab
Use this information to configure caching for a SQL data type.

Table 6. External Data Type Cache Settings tab - caching types

Cache type Description

Enable Data Caching This check box toggles data caching on and off.

Maximum number of data items Set the total number of data items to be stored in
the cache during the execution of the policy.

Invalidate Cached Data Items After Set to invalidate the cached items after the time
periods selected.

Enable Query Caching This check box toggles query caching on and off.

Maximum number of queries Set the maximum number of database queries to
be stored in the cache.

Invalidate Cached Queries After Set to invalidate the cached items after the time
periods selected.

Enable Count Cashing Do not set. Available for compatibility with
earlier versions only.

Performance Measurements Intervals Use this option to set the reporting parameters
for measuring how fast queries against a data
type are executed.

Polling Interval Select a polling interval for measuring
performance statistics for the data type.

34 Netcool/Impact: Solutions Guide

Table 6. External Data Type Cache Settings tab - caching types (continued)

Cache type Description

Query Interval Select the query interval for the performance
check.

Auto-populating the data type fields
After you have specified the name of the database and table, the next step is to
auto-populate the data type fields.

You can also specify the fields manually in the same way that you do for internal
data types, but in most cases, using the auto-populate feature saves time and
ensures that the field names are accurate.

When you auto-populate data type fields, the table description is retrieved from
the underlying data source, and a field in the data type is created for each column
in the table. The ID, actual name, and display name for the fields are defined using
the exact column name as it appears in the table.

A set of built-in rules is used to determine the data format for each of the
auto-populated fields. Columns in the database that contain text data, such as
varchar, are represented as string fields. Columns that contain whole numbers,
such as int and integer, are represented as integer fields. Columns that contain
decimal numbers are represented as float fields. Generally, you can automatically
assign the formats for data type fields without having to manually attempt to
recreate the database data formats in the data type.

If you only want a subset of the fields in a table to be represented in the data type,
you can manually remove the unwanted fields after auto-population. Removing
unwanted fields can speed the performance of a data type.

To auto-populate data type fields, you click the Refresh button in the Table
Description area of the Data Type tab. The table description is retrieved from the
data source, and the fields are populated. The fields are displayed in the Table
Description area.

After you auto-populate the data type fields, you can manually change the
attributes of any field definition. Do not change the value of the actual name
attribute. If you change this value, errors will be reported when you try to retrieve
data from the data type.

Specifying a data item filter
The data item filter specifies which rows in the underlying database table can be
accessed as data items in the data type.

This filter is an optional setting. The syntax for the data item filter is the same as
the contents of the WHERE clause in the SQL SELECT statement supported by the
underlying database.

For example, if you want to specify that only rows where the Location field is New
York are accessible through this data type, you can use the following data item
filter:
Location = ’New York’

Chapter 5. Working with data types 35

If you want to specify that only rows where the Location is either New York or New
Jersey, you can use the following:
Location = ’New York’ OR Location = ’New Jersey’

Make sure that you enclose any strings in single quotation marks.

To specify the data item filter, type the filter string in the Filter text box in the
Data Item Filter and Ordering area of the Data Type Editor.

Specifying data item ordering
Data item ordering defines the order in which data items are retrieved from the
data type.

The order settings are used both when you retrieve data items using the
GetByFilter function in a policy and when you browse data items using the GUI.
You can order data items in ascending or descending alphanumeric order by any
data type field. Data item ordering is an optional part of the data type
configuration.

You specify data item ordering in the data type configuration as a
comma-separated list of fields, where each field is accompanied with the ASC or
DESC keyword.

For example, to retrieve data items in ascending order by the Name field, you use
the following ordering string:
Name ASC

To retrieve data items in descending order first by the Location field and then in
ascending order by Name, you use the following string:
Location DESC,Name ASC

To specify data item ordering:
1. In the Data Type Editor, scroll down so that the Data Filtering and Ordering

area is visible.
2. Type the data item ordering string in the Order By field.

LDAP data types
An LDAP data type represents a set of entities in an LDAP directory tree.

The LDAP DSA determines which entities are part of this set in real time by
dynamically searching the LDAP tree for those that match a specified LDAP filter
within a certain scope. The DSA performs this search in relation to a location in the
tree known as the base context.

The LDAP Data Type editor contains three tabs.

Table 7. LDAP Data Type editor tabs

Tab Description

LDAP Info In this tab, you configure the attributes of the data type. For more
information about these attributes, see “LDAP data type configuration
window - LDAP Info tab” on page 37.

36 Netcool/Impact: Solutions Guide

Table 7. LDAP Data Type editor tabs (continued)

Tab Description

Dynamic
Links

In this tab you can create links to other data types, both external and
internal, to establish connections between information. Links between
individual data items can represent any relationship between the items that
policies need to be able to look up. For example, a node linked to an
operator allows a policy to look up the operator responsible for the node.

For more information about creating links to other data types, see “Links”
on page 14.

Cache
Settings

In this tab, you can set up caching parameters to regulate the flow of data
between Netcool/Impact and the external data source.

For more information about, cache settings see “SQL data type
configuration window - Cache settings tab” on page 34.

Important: You must create one LDAP data type for each set of entities that you
want to access. The LDAP data type is a read-only data type which means that
you cannot edit or delete LDAP data items from within the GUI.

Configuring LDAP data types
Use this procedure to configure an LDAP data type.

Procedure
v Provide a unique name for the data type.
v Specify the name of the underlying data source for the data type.
v Specify the base context level in the LDAP hierarchy where the elements you

want to access are located.
v Specify a display name field.
v Optional: Specify a restriction filter.

LDAP data type configuration window - LDAP Info tab
Use this information to configure LDAP information for a LDAP data type.

Table 8. LDAP Data Type editor - LDAP Info Tab

Editor element Description

General Settings

Data Type Name Type a unique name to identify the data type. Only letters,
numbers, and the underscore character must be used in the
data type name. If you use UTF-8 characters, make sure that
the locale on the Impact Server where the data type is saved is
set to the UTF-8 character encoding.

State: Enabled Leave checked to enable the data type so that it can be used
in policies.

LDAP Info

Chapter 5. Working with data types 37

Table 8. LDAP Data Type editor - LDAP Info Tab (continued)

Editor element Description

Data Source Name Type the name of the underlying data source.

This field is automatically populated, based on your data
source selection in the Data Types task pane of the Navigation
panel. However, if you have more than one LDAP data source
configured for use with Netcool/Impact, you can select any
LDAP data source in the list, if necessary.

If you enter a new name, a message window asks you to
confirm your change.

Search scope Select the search scope:

v OBJECT_SCOPE

v ONLEVEL_SCOPE

v SUBTREE_SCOPE

Base Context Type the base context that you want to be used when
searching for LDAP entities. For example:ou=people,
o=companyname.com.

Key Search Field Type the name of a key field, for example, dn.

Display Name Field You can use this field to select a field from the menu to label
data items according to the field value. Choose a field that
contains a unique value that can be used to identify the data
item for example, ID. To view the values on the data item you
need to go to View Data Items for the data type and select
the Links icon. Click the data item to display the details.

Restriction Filter: Optionally, type a restriction filter. The restriction filter is an
LDAP search filter as defined in Internet RFC 2254. This filter
consists of one or more Boolean expressions, with logical
operators prefixed to the expression list. For more information,
see the LDAP Filter information in the Policy Reference Guide.

Attribute Configuration

New Field For each field that you want to add to the data type, click
New.

Mediator DSA data types
Mediator DSA data types are typically created using scripts or other tools provided
by the corresponding DSA.

Usually the data types, and their associated data sources are installed when you
install the Mediator DSA (Corba or Direct), so you do not have to create them. The
installed data types are available for viewing and, if necessary, for editing.

For more information about the Mediator data types used with a particular DSA,
see the DSA documentation.

Data type caching
You can use data type caching to reduce the total number of queries that are made
against a data source for performance or other reasons.

38 Netcool/Impact: Solutions Guide

Caching helps you to decrease the load on the external databases used by
Netcool/Impact. Data caching also increases system performance by allowing you
to temporarily store data items that have been retrieved from a data source.

Important: Caching works best for static data sources and for data sources where
the data does not change often.

Caching works when data is retrieved during the processing of a policy. When you
view data items in the GUI, cached data is retrieved rather than data directly from
the data source.

You can specify caching for external data types to control the number of data items
temporarily stored while policies are processing data. Many data items in the cache
uses significant memory but can save bandwidth and time if the same data is
referenced frequently.

Important: Data type caching works with SQL database and LDAP data types.
Internal data types do not require data type caching.

You configure caching on a per data type basis within the GUI. If you do not
specify caching for the data type, each data item is reloaded from the external data
source every time it is accessed.

Configuring data caching
Use this procedure to configure data caching.

Procedure
1. In the navigation tree, expand System Configuration > Event Automation click

Data Model to open the Data Model tab.
2. Expand the Data Source that contains the data type you want to edit.
3. Double click the data type or click the Edit icon on the toolbar to open the

Cache Settings tab.
4. Select the Enable Data Caching check box.
5. Enter a number in the Maximum Number of Data Items field to set the

maximum number of data items to cache.
6. Enter the amount of time to cache each data item in theInvalidate Cached

Items After fields to set the expiration time for data items in the cache.
Netcool/Impact calculates the expiration time separately for each data item in
the cache.

7. Click Save to implement the changes to the data type.

Configuring query caching
Use this procedure to configure query caching.

Procedure
1. In the navigation tree, expand System Configuration > Event Automation click

Data Model to open the Data Model tab.
2. Expand the Data Source that contains the data type you want to edit.
3. Double click the data type or click the Edit icon on the toolbar to open the

Cache Settings tab.
4. Scroll down until the Enable Query Caching area is visible.
5. Select the Enable Query Caching check box.

Chapter 5. Working with data types 39

6. Enter a number in the Maximum Number of Data Items field to set the
maximum number of queries to cache.

7. Enter the amount of time to cache each data item in theInvalidate Cached
Items After fields to set the expiration time for query results in the cache.
The expiration time is calculated separately for each query in the cache.

8. Click Save to implement the changes to the data type.

Important: You must also enable data caching for query caching to work.

Count caching
Use this procedure to configure count caching.

Procedure
1. In the navigation tree, expand System Configuration > Event Automation click

Data Model to open the Data Model tab.
2. Expand the Data Source that contains the data type you want to edit.
3. Double click the data type or click the Edit icon on the toolbar to open the

Cache Settings tab.
4. Scroll down until the Enable Count Caching area is visible.
5. Select the Enable Count Caching check box.
6. Enter the amount of time to cache each data item in theInvalidate Cached

Items After fields.
You can configure the expiration time for items counted using this feature.

7. Click Save to implement the changes to the data type.

40 Netcool/Impact: Solutions Guide

Chapter 6. Working with links

You set up links after you have created the data types required by your solution
and after you have populated any internal data types in the model with
information.

When you write policies, you use the GetByLinks function to traverse the links and
retrieve data items that are linked to other data items.

Links overview
Links are an element of the data model that defines relationships between data
items and between data types.

They can save time during the development of policies because they allow you to
define a data relationship once and then reuse it several times when you need to
find data related to other data in a policy. Links are an optional part of a data
model. Dynamic links and static links are supported.

Link categories
Netcool/Impact provides two categories of links.

Static links
Static links define a relationship between data items in internal data types.

Dynamic links
Dynamic links define a relationship between data types.

Static links
Static links define a relationship between data items in internal data types.

Static links are supported for internal data types only. Static links are not
supported for other categories of data types, such as SQL database and LDAP
types, because the persistence of data items that are stored externally cannot be
ensured.

A static link is manually created between two data items when relationships do not
exist at the database level.

With static links, the relationship between data items is static and never changes
after they have been created. You can traverse static links in a policy or in the user
interface when you browse the linked data items. Static links are bi-directional.

Dynamic links
Dynamic links define a relationship between data types.

This relationship is specified when you create the link and is evaluated in real time
when a call to the GetByLinks function is encountered in a policy. Dynamic links
are supported for internal, SQL database and LDAP data types.

© Copyright IBM Corp. 2006, 2011 41

The relationships between data types are resolved dynamically at run time when
you traverse the link in a policy or when you browse links between data items.
They are dynamically created and maintained from the data in the database.

The links concept is similar to the JOIN function in an SQL database. For example,
there might be a 'Table 1' containing customer information (name, phone number,
address, and so on) with a unique Customer ID key. There may also be a 'Table 2'
containing a list of servers. In this table, the Customer ID of the customer that
owns the server is included. When these data items are kept in different databases,
Netcool/Impact permits the creation of a link between Table 1 and Table 2 through
the Customer ID field, so that you can see all the servers owned by a particular
customer.

You can use dynamic links only at the database level. (When relationships do not
exist at the database level, you needs to create static links.) You can create dynamic
links for all types of data types (internal, external, and predefined). See “Data
types” on page 13 for information about the kinds of data type.

Dynamic links are unidirectional links, configured from the source to the target
data type.

Link by filter
A link by filter is a type of dynamic link where the relationship between two data
types is specified using the link filter syntax. The link filter syntax is as follows:
target_field = %source_field% [AND (target_field = %source_field%) ...]

Where target_field is the name of a field in the target data type and
source_field is the name of the field in the source data type. When you call the
GetByLinks function in a policy, Netcool/Impact evaluates the data items in the
target data type and returns those items whose target_field value is equal to the
specified source_field.

If the value of source_field is a string, you must enclose it in single quotation
marks.

The following examples show valid link filters:
Location = ’%Name%’
(NodeID = %ID%) AND (Location = ’%Name%’)

Link by key
A link by key is a type of dynamic link where the relationship between two data
types is specified by a foreign key expression.

The foreign key expression is the value that the key field in data items in the target
data type must have in order to be considered linked to the source. The syntax of
the foreign key expression is the name or names of fields in the source data type
whose value must equal the key field in the target. You can concatenate fields
using the addition (+) operator.

When you call the GetByLinks function in a policy, Netcool/Impact evaluates the
data items in the target data type and returns those data items whose key field
values match the specified key expression.

The following examples show valid key expressions:

42 Netcool/Impact: Solutions Guide

LastName
FirstName + " " + LastName
LastName + ", " + FirstName

Link by policy
A link by policy is a type of dynamic link where the relationship between two data
types is specified by a policy.

The policy contains the logic that is used to retrieve data items from the target data
type. The linking policy specifies which data items to return by setting the value of
the DataItems variable.

Setting up static links
Use this procedure to set up a static link.

Procedure
1. In the navigation tree, expand System Configuration > Event Automation click

Data Model to open the Data Model tab.
2. Expand the Data Source that contains the internal data type you want to link.
3. Double click the data type or click the Edit icon on the toolbar to open the

source data item you want to link.
A Data Type Editor tab opens in the Main Work panel.

4. Click the Links button for the data item you want to link.
5. In the Static Links window that opens, select the data type that contains the

data items you want to link to.
6. Select the data item to link to from the list of data items that appears.

Setting up dynamic links
You can set up a dynamic link by filter, by key, and by policy.

Procedure
1. In the navigation tree, expand System Configuration > Event Automation, and

click Data Model to open the Data Model tab.
2. Expand the Data Source that contains the internal data type you want to link.
3. Double click the data type or click the Edit icon on the toolbar to open the data

type you want to use as the source for the link.
4. In the Data Type Editor tab, select the Dynamic Links tab in the Data Type

Editor.
5. Depending on the type of link you want to create, click New Link By Filter,

New Link By Key, or Link By Policy button.
This will bring up a new link editor window.

Tip: To create a new link by policy, you may need to scroll down so that the
Link By Policy area is visible.

6. Select the target data type from the Target Data Types list.
7. Select the exposed link type from the Exposed Link Type list.
8. Depending on the type of link you are creating, type in the filter, key

expression, or select a policy.

Chapter 6. Working with links 43

v For a link by filter, type the filter syntax for the link in the Filter into Target
Data Type field. For example: Location = ’%Facility%’.

v For a link by key, type the key expression in the Foreign Key Expression
field. For example: FirstName + ’ ’ + LastName.

v For a link by policy, select the linking policy from the Policy To Execute to
Find Links list.

9. Click OK.

44 Netcool/Impact: Solutions Guide

Chapter 7. Working with event sources

When you design your solution, you must create one event source for each
application that you want to monitor for events, then you can create event reader
services and associate them with the event source.

Typically, a solution uses a single event source. This event source is most often an
ObjectServer database.

Event sources overview
An event source is a special type of data source that represents an application that
stores and manages events, the most common such application being the
ObjectServer database.

An event is a set of data that represents a status or an activity on a network. The
structure and content of an event varies depending on the device, system, or
application that generated the event but in most cases, events are
Netcool/OMNIbus alerts.

The installer automatically creates a default ObjectServer event source,
defaultobjectserver. This event source is configured using information you provide
during the installation. You can also use other applications as non-ObjectServer
event sources.

After you have set an event source, you do not need to actively manage it unless
you change the solution design but, if necessary, you can use the GUI to modify or
delete event sources.

ObjectServer event sources
The most common event source are ObjectServer event sources that represent
instances of the Netcool/OMNIbus ObjectServer database.

ObjectServer events are alerts stored in the alerts.status table of the database.
These alerts have a predefined set of alert fields that can be supplemented by
additional fields that you define.

ObjectServer event sources are monitored using an OMNIbus event reader service.
The event reader service queries the ObjectServer at intervals and retrieves any
new, updated, or deleted events that matches its predefined filter conditions. The
event reader then passes each event to the policy engine for processing.

Non-ObjectServer event sources
Non-ObjectServer event sources represent instances of other applications, such as
external databases or messaging systems, that provide events to Netcool/Impact.

Non-ObjectServer events can take a wide variety of forms, depending on the
nature of the event source. For SQL database event sources, an event might be the
contents of a row in a table. For a messaging system event source, an event might
be the contents of a message.

© Copyright IBM Corp. 2006, 2011 45

Non-ObjectServer event sources are monitored using an event listener service. The
event listener service passively receives events from the event source and then
passes them to the policy engine for processing.

The DatabaseEventReader service monitors Non-ObjectServer data sources. The
Database Event Reader service queries the SQL data source at intervals and
retrieves any new or updated events that match its predefined filter conditions.
The Database Event Reader passes each event to the policy engine for processing.

46 Netcool/Impact: Solutions Guide

Event source architecture
This diagram shows how event sources interact with event sources and event
listeners with their underlying event management applications.

Setting up ObjectServer event sources
Use this procedure to set up an ObjectServer event source.

Figure 3. Event source architecture

Chapter 7. Working with event sources 47

Procedure
v Get the connection information for the ObjectServer.

This information is the host name or IP address of the ObjectServer host system
and the port number. The default port number for the ObjectServer is 4100.

v Create and configure the event source.
For more information, see “Configuring the default ObjectServer data source” in the
Administration Guide.

v After you create the event source, you can then create and configure an
associated event reader service.
For more information about creating and configuring an event reader service,
see the User Interface Guide.

48 Netcool/Impact: Solutions Guide

Chapter 8. Working with services

You work with services by configuring predefined services, and creating and
configure user-defined services.

Services overview
Services perform much of the functionality associated with the Impact Server,
including monitoring event sources, sending and receiving e-mail, and triggering
policies.

The most important service is the OMNIbus event reader, which you can use to
monitor an ObjectServer for new, updated or deleted events. The event processor,
which processes the events retrieved from the readers and listeners is also
important to the function of Netcool/Impact.

Internal services control the application's standard processes, and coordinate the
performed tasks, for example:
v Receiving events from the ObjectServer and other external databases
v Executing policies
v Responding to and prioritizing alerts
v Sending and receiving e-mail and instant messages
v Handling errors

Some internal services have defaults, that you can enable rather than configure
your own services, or in addition to creating your own. For some of the basic
internal services, it is only necessary to specify whether to write the service log to
a file. For other services, you need to add information such as the port, host, and
startup data.

User defined services are services that you can create for use with a specific policy.

Generally, you set up services once, when you first design your solution. After
that, you do not need to actively manage the services unless you change the
solution design.

To set up services, you must first determine what service functionality you need to
use in your solution. Then, you create and configure the required services using
the GUI. After you have set up the services, you can start and stop them, and
manage the service logs.

Predefined services
Predefined services are services that are created automatically when you install
Netcool/Impact. You can configure predefined services, but you cannot create new
instances of the predefined services and you cannot delete existing ones.

These services are predefined:
v Event processor
v E-mail sender
v Hibernating policy activator

© Copyright IBM Corp. 2006, 2011 49

v Policy logger
v Command-line manager

User-defined services
User-defined services are services that you can create, modify, and delete. You can
also use the default instance of these services that are created at installation.

You can create user-defined services by using the defaults that are stored in the
global repository or select them from a list in the services task pane in the
navigation panel. All user-defined services are also listed in the services panel
where you can start them and stop them, just as you do the internal services. You
can add these services to a project as project members.

These services are user-defined:
v

v Event readers
v Event listeners
v E-mail readers
v Policy activators

50 Netcool/Impact: Solutions Guide

Chapter 9. OMNIbus event reader service

OMNIbus event readers are services that monitor a Netcool/OMNIbus
ObjectServer event source for new, updated, and deleted alerts and then runs
policies when the alert information matches filter conditions that you define.

The event reader service uses the host and port information of a specified
ObjectServer data source so that it can connect to an Objectserver to poll for new
and updated events and store them in a queue. The event processor service
requests events from the event reader. When an event reader discovers new,
updated, or deleted alerts in the ObjectServer, it retrieves the alert and sends it to
an event queue. Here, the event waits to be handled by the event processor.

You configure this service by defining a number of restriction filters that match the
incoming events, and passing the matching events to the appropriate policies. The
service can contain multiple restriction filters, each one triggering a different policy
from the same event stream, or it can trigger a single policy.

You can configure an event reader service to chain multiple policies together to be
run sequentially when triggered by an event from the event reader.

Important: Before you create an OMNIbus event reader service, you must have a
valid ObjectServer data source to which the event reader will connect to poll for
new and updated events.

OMINbus event reader architecture
This diagram shows the relationship between Netcool/Impact, an OMNIbus event
reader, and an ObjectServer.

Figure 4. Event reader architecture

© Copyright IBM Corp. 2006, 2011 51

OMNIbus event reader process
The phases of the OMNIbus event reader process are startup, event polling, event
querying, deleted event notification, and event queueing.

Startup
When the event reader is started it reads events using the StateChange or
serial value that it used before being shut down. To read all the events on
start-up, click Clear State.

Event Polling
During the event polling phase, the OMNIbus event reader queries the
ObjectServer at intervals for all new and unprocessed events. You set the
polling interval when you configure the event reader.

Event Querying
When the OMNIbus event reader queries the ObjectServer, either at
startup, or when polling for events at intervals, it reads the state file,
retrieves new or updated events, and records the state file.. For more
information, see “Event querying.”

Deleted Event Notification
If the OMNIbus event reader is configured to run a policy when an event
is deleted from the ObjectServer, it listens to the ObjectServer through the
IDUC interface for notification of deleted alerts. The IDUC delete
notification includes the event field data for the deleted alert.

Event Queueing
After it retrieves new or updated events, or has received events through
delete notification, the OMNIbus event reader compares the field data in
the events to its set of filters.. For more information, see “Event queuing”
on page 53.

Event querying
When the OMNIbus event reader queries the ObjectServer, either at startup, or
when polling for events at intervals, it reads the state file, retrieves new or
updated events, and records the state file.

Reading the state file
The state file is a text file used by the OMNIbus event reader to cache state
information about the last event read from the ObjectServer.. The event
reader reads the state file to find the Serial or StateChange value of the
last read event. For more information, see “Reading the state file.”

Retrieving new or updated events
The event reader connects to the ObjectServer and retrieves new or
updated events that have occurred since the last read event. During this
phase, the event reader retrieves all the new or updated events from the
ObjectServer, using information from the state file to specify the correct
subset of events.

Recording the state file
After the event reader retrieves the events from the ObjectServer, it caches
the Serial or StateChange value of the last processed event.

Reading the state file
The state file is a text file used by the OMNIbus event reader to cache state
information about the last event read from the ObjectServer.

52 Netcool/Impact: Solutions Guide

If the event reader is configured to get only new events from the ObjectServer, the
state file contains the Serial value of the last event read from the ObjectServer. If
the event reader is configured to get both new and updated events from the
ObjectServer, the file contains the StateChange value of the last read event.

The event reader reads the contents of the state file whenever it polls the
ObjectServer and passes the Serial or StateChange value as part of the query.

Event queuing
After it retrieves new or updated events, or has received events through delete
notification, the OMNIbus event reader compares the field data in the events to its
set of filters.

If the event matches one or more of its filters, the event reader places the event in
the event queue with a pointer to the corresponding policy. After the events are in
the event queue, they can be picked up by the event processor service. The event
processor passes the events to the corresponding policies to the policy engine for
processing.

OMNIbus event reader configuration
You can configure the following properties of an OMNIbus event reader.
v Event reader name
v ObjectServer event source you want the event reader to monitor
v Interval at which you want the event reader to poll the ObjectServer
v Event fields you want to retrieve from the ObjectServer
v Event mapping
v Event locking
v Order in which the event reader retrieves events from the ObjectServer
v Start up, service log, and reporting options

OMNIbus event reader service General Settings tab
Use this information to configure the general settings of the OMNIbus event reader
service.

Table 9. EventReader service - general settings tab

Table Element Description

Service name Type a unique name to identify the service.

Data Source Select an OMNIbusObjectServer data source. The ObjectServer
data source represents the instance of the Netcool/OMNIbus
ObjectServer that you want to monitor using this service. You
can use the default ObjectServer data source that is created
during the installation, defaultobjectserver.

Polling Interval The polling interval is the interval in milliseconds at which the
event reader polls the ObjectServer for new or updated events.

Select or type how often you want the service to poll the events
in the event source. If you leave this field empty, the event
reader polls the ObjectServer every 3 seconds (3000
milliseconds).

Chapter 9. OMNIbus event reader service 53

Table 9. EventReader service - general settings tab (continued)

Table Element Description

Restrict Fields: Fields You can complete this step when you have saved the
OMNIbusEventReader service. You can specify which event
fields you want to retrieve from the ObjectServer. By default, all
fields are retrieved in the alerts. To improve OMNIbus event
reader performance and reduce the performance impact on the
ObjectServer, configure the event reader to retrieve only those
fields that are used in the corresponding policies.

Click the Fields button to access a list of all the fields available
from the selected ObjectServer data source.

You can reduce the size of the query by selecting only the fields
that you need to access in your policy. Click the Optimize List
button to implement the changes. The Optimize List button
becomes enabled only when the OMNIbusEventReader service
has been saved.

Startup: Automatically
when server starts

Select to automatically start the service when the server starts.
You can also start and stop the service from the GUI.

Service log: Write to file Select to write log information to a file.

Collect Reports: Enable Select to enable data collection for the Policy Reports.

Clear State: Clear When you click the Clear State button, the Serial and
StateChange information stored for the event reader is reset to 0.
The event reader retrieves all events in the ObjectServer at
startup and places them in the event queue for processing. If the
event reader is configured to get updated events, it queries the
ObjectServer for all events where StateChange >= 0. Otherwise,
it queries the ObjectServer for events where Serial > 0.

You can use the Clear State button only to clear the event reader
state when the service is stopped. Clicking the button while the
service is running does not change the state of the event reader.

Clear Queue: Clear Click to clear unprocessed events.

OMNIbus event reader service Event Mapping tab
In the Event Mapping tab, you set events to trigger policies when they match a
filter.

Table 10. Event Mapping tab

Window element Description

Event Matching

Test events with all filters Select this option to test events with all filters and run
any matching policies.

If an event matches more than one filter, all policies that
match the filtering criteria will be triggered.

Stop testing after first match Select this option to stop testing after the first matching
policy, and trigger only the first matching policy.

Actions

Get updated events Select to receive updated events as well as new events
from the ObjectServer (All new events are automatically
sent). See also the description of the Order By field
below for more information.

54 Netcool/Impact: Solutions Guide

Table 10. Event Mapping tab (continued)

Window element Description

Get status events Select to receive the status events that the Self
Monitoring service inserts into the ObjectServer.

Run policy on deletes Select if you want the event reader to receive notification
when alerts are deleted from the ObjectServer. Then,
select the policy you want to run when notification
occurs from the Policy list.

Policy Select a policy to run when events are cleared from the
ObjectServer.

Event Locking: enable Select if you want to use event order locking and type
the locking expression in the Expression field.

Event locking is a feature that allows a multi-threaded
event processor to categorize incoming alerts based on
the values of specified alert fields and then to process
them within a category one at a time.

With event locking enabled, if more than one event exists
with a certain lock value, then these events are not
processed at the same time. These events are processed
in a specific order in the queue.

You use event locking in situations where you want to
prevent a multi-threaded event processor from
attempting to access a single resource from more than
one instance of a policy running simultaneously.

Expression The locking expression consists of one or more alert field
names.

To lock on a single field, specify the field name, for
example:

Node

To lock more than one field, concatenate them with the +
sign, for example:

Node+Severity

If the value of that field is the same in both events, then
one event is locked and the second thread must wait
until the first one is finished.

New Mapping Click to add a new filter.

Chapter 9. OMNIbus event reader service 55

Table 10. Event Mapping tab (continued)

Window element Description

Order by If you want to order incoming events retrieved from the
ObjectServer, type the name of an alert field or a
comma-separated list of fields. The event reader will sort
incoming events in ascending order by the contents of
this field.

This field or list of fields is identical to the contents of an
ORDER BY clause in an SQL statement. If you specify a
single field, the event reader sorts incoming events by
the specified field value. If you specify multiple fields,
the events are grouped by the contents of the first field
and then sorted within each group by the contents of the
second field, and so on.

For example, to sort incoming events by the contents of
the Node field, type Node.

To sort events first by the contents of the Node field and
then by the contents of the Summary field, type Node,
Summary.

You can also specify that the sort order is ascending or
descending using the ASC or DESC key words.

For example, to sort incoming events by the contents of
the Node field in ascending order, type the following
Node ASC.

Note that all events retrieved from the ObjectServer are
initially sorted by either the Serial or StateChange field
before any additional sorting operations are performed.
If you select the Get updated events option (see the
Actions check box in the Event Mapping section of the
window), the events are sorted by the StateChange field.
If this option is not specified, incoming events are sorted
by the Serial field.

Analyze Event Mapping Table Click to analyze the filters in the Event Mapping table.

Mappings
Event mappings allow you to specify which policies you want to be run when
certain events are retrieved.

Each mapping consists of a filter that specifies the type of event and a policy
name. You must specify at least one event mapping for the event reader to work.

The syntax for the filter is the same as the WHERE clause in an SQL SELECT
statement. This clause consists of one or more comparisons that must be true in
order for the specified policy to be executed. For more information about the SQL
filter syntax, see the Policy Reference Guide.

The following examples show event mapping filters.
AlertKey = ’Node not responding’
AlertKey = ’Node not reachable by network ping’ AND Node = ’ORA_Host_01’

56 Netcool/Impact: Solutions Guide

Event matching
You can specify whether to run only the first matching policy in the event
mappings or to run every policy that matches.

If you choose to run every policy that matches, the OMNIbus event reader will
place a duplicate of the event in the event queue for every matching policy. The
event will be processed as many times as their are matching filters in the event
reader.

Actions
By default, the event broker monitors the ObjectServer for new alerts, but you can
also configure it to monitor for updated alerts and to be notified when an alert is
deleted.

In addition, you can configure it to get all the unprocessed alerts from the
ObjectServer at startup.

Event locking
Event locking allows a multithreaded event broker to categorize incoming alerts
based on the values of specified alert fields and then to process them within a
category one at a time in the order that they were sent to the ObjectServer.

Event locking locks the order in which the event broker processes alerts within
each category.

Remember: When event locking is enabled in the reader, the events read by it are
only processed in the primary server of the cluster.

You use event locking in situations where you want to preserve the order in which
incoming alerts are processed, or in situations where you want to prevent a
multithreaded event processor from attempting to access a single resource from
more than one instance of a policy running simultaneously.

You specify the way the event reader categorizes incoming alerts using an
expression called a locking expression. The locking expression consists of one or
more alert field names concatenated with a plus sign (+) as follows:
field[+field...]

Where field is the name of an alert field in the alerts.status table of the
ObjectServer.

When an event reader retrieves alerts from the ObjectServer, it evaluates the
locking expression for each incoming alert and categorizes it according to the
contents of the alert fields in the expression.

For example, when using the locking expression Node, the event broker categorizes
all incoming alerts based on the value of the Node alert field and then processes
them within a category one at a time in the order that they were sent to the
ObjectServer.

In the following example:
Node+AlertKey

Chapter 9. OMNIbus event reader service 57

The event broker categorizes all incoming alerts based on the concatenated values
of the Node and AlertKey fields. In this example, an alert whose Node value is Node1
and AlertKey value is 123456 is categorized separately

Event order
The reader first sorts based on StateChange or Serial value depending on whether
Get Updates is used or not.

Each event has a unique Serial so the Order by field is ignored. In instances where
there is more than one event with the same StateChange, the reader uses the Order
By field to sort events after they are sorted in ascending order of StateChange.

58 Netcool/Impact: Solutions Guide

Chapter 10. Database event listener service

The database event listener service monitors an Oracle event source for new,
updated, and deleted events.

This service works only with Oracle databases. When the service receives the data,
it evaluates the event against filters and policies specified for the service and sends
the event to the matching policies. The service listens asynchronously for events
generated by an Oracle database server and then runs one or more policies in
response.

You configure the service using the GUI. The configuration properties allow you to
specify one or more policies that are to be run when the listener receives incoming
events from the database server.

Setting up the database server
Before you can use the database event listener, you must configure the database
client and install it into the Oracle database server.

About this task

The database client is the component that sends events from the database server to
Netcool/Impact. It consists of a set of Oracle Java schema objects and related
properties files. When you install the Impact Server, the installer copies a tar file
containing the client program files to the local system.

Perform these steps to set up the database server:

Procedure
1. Copy the client tar file to the system where Oracle is running and extract its

contents.
a. Copy the client tar file, $IMPACT_HOME/install/agents/oracleclient.tar,

from Netcool/Impact into a temporary directory on the system where
Oracle is running.

b. Extract the tar contents using the UNIX tar command or a Windows archive
utility, for example WinZip.

2. Edit the nameserver properties file on the database client side.
The client tar file contains the nameserver.props file that the database client
uses to determine the NameServer connection details. For information about
configuring this file, see “Editing the nameserver.props file for the database
client” on page 60.

3. Optional: Edit the listener properties file.
The client tar file contains the impactdblistener.props with additional settings
for the database client. For information about configuring this file, see “Editing
the listener properties file” on page 61.

4. Install the client files into the database server using the Oracle loadjava utility.

© Copyright IBM Corp. 2006, 2011 59

Oracle provides the $ORACLE_HOME/bin/loadjava utility that you can use to
install the client files into the database server. For information about installing
the client files into the database server, see “Installing the client files into
Oracle” on page 61.

5. Grant database permissions.
You must grant a certain set of permissions in the Oracle database server in
order for the database event listener to function.. For more information about
granting database permissions, see “Granting database permissions” on page
62.

Editing the nameserver.props file for the database client
The client tar file contains the nameserver.props file that the database client uses to
determine the NameServer connection details.

The database client uses the name server to find and connect to the primary
instance of the Impact Server.

Restriction: In clustering configurations of Netcool/Impact, the database event
listener only runs in the primary server.

The following example shows a sample of the nameserver.props file that the
database client can use to connect to a single-server configuration of the
NameServer.
nameserver.0.host=NCI1
nameserver.0.port=9080
nameserver.0.location=/nameserver/services

nameserver.userid=tipadmin
nameserver.password=tippass

nameserver.count=1

In this example, the NameServer is located on the NCI1 Impact Server, and is
running on the default port, 9080. The NameServer user and password have
default values, tipadmin, and tippass.

The following example shows a sample of the nameserver.props file that the
database client can use to connect to a cluster that consists of two NameServer
instances.
nameserver.0.host=NCI1
nameserver.0.port=9080
nameserver.0.location=/nameserver/services

nameserver.1.host=NCI2
nameserver.1.port=9080
nameserver.1.location=/nameserver/services

nameserver.userid=tipadmin
nameserver.password=tippass

nameserver.count=2

In this example, the NameServers are located on systems named NCI1, and NCI2
Impact Servers, and are running on the default port, 9080.

60 Netcool/Impact: Solutions Guide

Editing the listener properties file
The client tar file contains the impactdblistener.props with additional settings for
the database client.

Edit this file so that it contains the correct name for the Impact Server cluster. You
can also change debug and delimiter properties.

Table 11 shows the properties in the listener properties file:

Table 11. Database client listener properties file

Property Description

impact.cluster.name Name of the Impact Server cluster where the
database event listener is running. The
default value for this property is NCICLUSTER.

impact.dblistener.debug Specifies whether to run the database client
in debug mode. The default value for this
property is true.

impact.dblistener.delim Specifies the delimiter character that
separates name/value pairs in the VARRAY
sent by Java stored procedures to the
database client. The default value for this
property is the pipe character (|). You
cannot use the colon (:) as a delimiter.

Installing the client files into Oracle
Oracle provides the $ORACLE_HOME/bin/loadjava utility that you can use to install
the client files into the database server.

Before you begin

If you are migrating to Netcool/Impact 6.1, remove any preexisting jar and
properties files. To remove the preexisting files, use the following command:
dropjava -user username/password <file>

username, and password is a valid user name and password for a user whose
schema contains the database resources where the Java stored procedures are run.

Procedure
1. Navigate to the ORACLE_HOME/bin directory.
2. Install the client jar, and properties files.

a. Install the nameserver.jar file using the following command:
loadjava -user username/password -resolve nameserver.jar

b. Install the impactdblistener.jar file using the following command:
loadjava -user username/password -resolve impactdblistener.jar

c. Install the nameserver.props file using the following command:
loadjava -user username/password -resolve nameserver.props

d. Install the impactdblistener.props file using the following command:
loadjava -user username/password -resolve impactdblistener.props

Important: You must follow this order of installation, otherwise loadjava will
not be able to resolve external references between files, and report errors
during installation.

Chapter 10. Database event listener service 61

Granting database permissions
You must grant a certain set of permissions in the Oracle database server in order
for the database event listener to function.

Procedure
1. Grant the permissions by entering the following commands at an Oracle

command prompt:
exec dbms_java.grant_permission(’SCHEMA’,’SYS:java.net.SocketPermission’,
’hostname:port’,’connect,resolve’)

/
exec dbms_java.grant_permission(’SCHEMA’,’SYS:java.net.SocketPermission’,
’hostname:listener_port’,’connect,resolve’)

/
exec dbms_java.grant_permission(’SCHEMA’, ’SYS:java.lang.RuntimePermission’,
’shutdownHooks’ , ’’);

/
exec dbms_java.grant_permission(’SCHEMA’,’SYS:java.util.logging.LoggingPermission’
,’control’, ’’);
/
exec dbms_java.grant_permission(’SCHEMA’, ’SYS:java.util.PropertyPermission’,
’*’, ’read, write’)

/
exec dbms_java.grant_permission(’SCHEMA’, ’SYS:java.lang.RuntimePermission’,
’getClassLoader’, ’’)

/
exec dbms_java.grant_permission(’SCHEMA’,’SYS:java.net.SocketPermission’,
’hostname:40000’,’connect,resolve’);

SCHEMA is the name of your database schema; hostname is the name of the
host where you are running the Impact Server; port is the HTTP port on the
server; and listener_port is the port used by the database event listener.

2. Optional: You may need to grant socket permissions to additional ports for
Oracle.
For example, the next two port numbers in the allocation sequence for use in
connecting to the database event listener service. You can adjust the
communication port on the Impact Server so that the Oracle client can grant
permissions to connect to the Impact Server on that port using the
impact.server.rmiport property. For example:
IMPACT_HOME/etc/<servername>_server.props impact.server.rmiport=50000

Grant the permission to connect to this port in your Oracle database (port
50000 in the example), otherwise the Impact Server starts at a random port. You
have to grant permissions for a different port each time the Impact Server is
restarted.

Database event listener service configuration window
You configure the database event listener service by setting events to trigger
policies when they match a filter.

Table 12. Database Event Listener service configuration window

Window element Description

Event Matching

Test events with all filters Click this icon if, when an event matches
more than one filter, you want to trigger all
policies that match the filtering criteria.

62 Netcool/Impact: Solutions Guide

Table 12. Database Event Listener service configuration window (continued)

Window element Description

Stop testing after first match Click this icon if you want to trigger only the
first matching policy.

You can choose to test events with all filters
and run any matching policies or to stop
testing after the first matching policy.

New Mapping: New Click this icon to create an event filter.

Analyze Event Mapping Table Click this icon to view any conflicts with filter
mappings that you have set for this service.

Startup: Automatically when server starts Select to automatically start the service when
the server starts. You can also start and stop
the service from the GUI.

Service log: Write to file Select to write log information to a file.

Sending database events
Perform these tasks to configure the database to send events.
v Create a call spec that publishes the sendEvent() function from the database

client library.
v Create triggers that call the resulting stored procedure.

Before you create these objects in the database, you must understand what kind of
database events you want to send and what conditions will cause them to be sent.
For example, if you want to send an event to Netcool/Impact every time a row is
inserted into a table, you must know the identity of the table, the subset of row
information to send as part of the event and the name of the condition (for
example, after insert) that triggers the operation.

For more information about Java stored procedures, call specs, and triggers, see the
Oracle Java Stored Procedure Developer's Guide.

Creating the call spec
The database client exposes a function named sendEvent() that allows Oracle
schema objects (in this case, triggers) to send events to Netcool/Impact.

The sendEvent() function is located in the class
com.micromuse.response.service.listener.database. DatabaseListenerClient,
which you compiled and loaded when you installed the client into the database
server.

The function has the following syntax:
sendEvent(java.sql.Array x)

Where each element in array x is a string that contains a name/value pair in the
event.

In order for Oracle objects to call this function, you must create a call spec that
publishes it to the database as a stored procedure. The following example shows a
call spec that publishes sendEvent() as a procedure named test_varray_proc:

Chapter 10. Database event listener service 63

CREATE OR REPLACE PROCEDURE test_varray_proc(v_array_inp db_varray_type)
AS LANGUAGE JAVA
NAME
’com.micromuse.response.service.listener.database.DatabaseListenerClient.
sendEvent(java.sql.Array)’;

/

In this example, db_varray_type is a user-defined VARRAY that can be described
using the following statement:
CREATE TYPE db_varray_type AS VARRAY(30) OF VARCHAR2(100);

This call spec and VARRAY type are used in examples elsewhere in this chapter.

When you call the procedure published with this call spec, you pass it an Oracle
VARRAY in which each element is a string that contains a name/value pair in the
event. The name and value in the string are separated using the pipe character (|)
or another character as specified when you configured the database client.

Creating triggers
You can create triggers for DML events, DDL events, system events, and user
events.

DML events triggers
DML events are sent to Netcool/Impact when the database performs operations
that change rows in a table.

These include the standard SQL INSERT, UPDATE, and DELETE commands.

You configure the database to send DML events by creating triggers that are
associated with these operations. Most often, these triggers take field data from the
rows under current change and pass it to the database client using the call spec
you previously created. In this way, the database reports the inserts, updates, and
deletes to Netcool/Impact for processing as events.

When the database client receives the field data from the trigger, it performs a
SELECT operation on the table to determine the underlying data type of each field.
Because the corresponding row is currently under change, Oracle is likely to report
a mutating table error (ORA-04091) when the database client performs the SELECT.

To avoid receiving this error, your DML triggers must create a copy of the row
data first and then use this copy when sending the event.

The following example contains table type declarations, variable declarations, and
trigger definitions that create a temporary copy of row data. You can modify this
example for your own use. This example uses the type db_varray_type described
in the previous section. The triggers in the example run in response to changes
made to a table named dept.

This example contains:
v Type declaration for deptTable, which is a nested table of db_varray_type.
v Variable declaration for dept1, which is a table of type deptTable. This table

stores the copy of the row data.
v Variable declaration for emptyDept, which is a second table of type deptTable.

This table is empty and is used to reset dept1.
v Trigger definition for dept_reset, which is used to reset dept1.

64 Netcool/Impact: Solutions Guide

v Trigger definition for dept_after_row, which populates dept1 with field data
from the changed rows.

v Trigger definition for dept_after_stmt, which loops through the copied rows
and sends the field data to the database client using the call spec defined in the
previous section.

The trigger definition for dept_after_row is intentionally left incomplete in this
example, because it varies depending on whether you are handling INSERT, UPDATE
or DELETE operations.

This is an example definition for this trigger:
CREATE OR REPLACE PACKAGE dept_pkg AS

/* deptTable is a nested table of VARRAYs that will be sent */
/* to the database client */
TYPE deptTable IS TABLE OF db_varray_type INDEX BY BINARY_INTEGER;

/* dept1 will store the actual VARRAYs
dept1 deptTable;

/* emptyDept is used for initializing dept1 */
emptyDept deptTable;

end;
/

CREATE OR REPLACE TRIGGER dept_reset
BEFORE INSERT OR UPDATE OR DELETE ON dept
BEGIN

/* Initialize dept1 */
dept_pkg.dept1 := dept_pkg.emptyDept;
end;
/

/* CREATE OR REPLACE TRIGGER dept_after_row
/* AFTER INSERT OR UPDATE OR DELETE ON dept
/* FOR EACH ROW
/* BEGIN

/* This trigger intentionally left incomplete. */
/* See examples in following sections of this chapter. */

end;
/

CREATE OR REPLACE TRIGGER dept_after_stmt
AFTER INSERT OR UPDATE OR DELETE ON dept
BEGIN

/* Loop through rows in dept1 and send field data to database client */
/* using call proc defined in previous section of this chapter */

for i in 1 .. dept_pkg.dept1.count loop
test_varray_proc(dept_pkg.dept1(i));

end loop;

end;
/

Chapter 10. Database event listener service 65

Insert events triggers
To send an event to Netcool/Impact when Oracle performs an INSERT operation,
you must first create a trigger that copies the inserted row data to a temporary
table.

You then use another trigger as shown in the example to loop through the
temporary table and send the row data to the database client for processing.

A typical insert trigger contains a statement that populates a VARRAY with the
wanted field data and then assigns the VARRAY as a row in the temporary table.
Each element in the VARRAY must contain a character-delimited set of
name/value pairs that the database client converts to event format before sending
it to Netcool/Impact. The default delimiter character is the pipe symbol (|).

The VARRAY must contain an element for a field named EVENTSOURCE. This field is
used by the database client to determine the table where the database event
originated.

The following example shows a typical VARRAY for insert events:
db_varray_type(’EVENTSOURCE | SCOTT.DEPT’,
’DEPTNO | ’||:NEW.DEPTNO, ’LOC | ’||:NEW.LOC,
’DNAME | ’||:NEW.DNAME, ’IMPACTED | ’||:NEW.IMPACTED);

In this example, the VARRAY contains an EVENTSOURCE field and fields that contain
values derived from the inserted row, as contained in the NEW pseudo-record
passed to the trigger. The value of the EVENTSOURCE field in this example is the dept
table in the Oracle SCOTT schema.

The following example shows a complete trigger that copies new row data to the
temporary table dept1 in package dept_pkg.
CREATE OR REPLACE TRIGGER dept_after_row
AFTER INSERT ON dept
FOR EACH ROW
BEGIN

dept_pkg.dept1(dept_pkg.dept1.count + 1) :=
db_varray_type(’EVENTSOURCE | SCOTT.DEPT’, ’DEPTNO | ’||:NEW.DEPTNO,
’LOC | ’||:NEW.LOC, ’DNAME | ’||:NEW.DNAME,
’IMPACTED | ’||:NEW.IMPACTED);

end;
/

For a complete example that shows how to send an insert event, see “Insert event
trigger example” on page 69.

Update and delete events triggers
You can send update and delete events using the same technique you use to send
insert events.

When you send update and delete events, however, you must obtain the row
values using the OLD pseudo-record instead of NEW.

The following example shows a trigger that copies updated row data to the
temporary table dept1 in package dept_pkg.
CREATE OR REPLACE TRIGGER dept_after_row
AFTER UPDATE ON dept
FOR EACH ROW

66 Netcool/Impact: Solutions Guide

BEGIN

dept_pkg.dept1(dept_pkg.dept1.count + 1) :=
db_varray_type(’EVENTSOURCE | SCOTT.DEPT’,
’DEPTNO | ’||:OLD.DEPTNO, ’LOC | ’||:OLD.LOC,
’DNAME | ’||:OLD.DNAME, ’IMPACTED | ’||:OLD.IMPACTED);

end;
/

The following example shows a trigger that copies deleted row data to the
temporary table dept1.
CREATE OR REPLACE TRIGGER dept_after_row
AFTER DELETE ON dept
FOR EACH ROW
BEGIN

dept_pkg.dept1(dept_pkg.dept1.count + 1) :=
db_varray_type(’EVENTSOURCE | SCOTT.DEPT’,
’DEPTNO | ’||:OLD.DEPTNO, ’LOC | ’||:OLD.LOC,
’DNAME | ’||:OLD.DNAME, ’IMPACTED | ’||:OLD.IMPACTED);

end;
/

DDL events triggers
DDL events are sent to Netcool/Impact when the database performs an action that
changes a schema object.

These actions include the SQL CREATE, ALTER, and DROP commands.

To send DDL events, you create a trigger that populates a VARRAY with data that
describes the DDL action and the database object that is changed by the operation.
Then, you pass the VARRAY element to the database client for processing. As with
DML events, the VARRAY contains a character-delimited set of name/value pairs
that the database client converts to event format before sending to Netcool/Impact.

DDL events require two VARRAY elements: EVENTSOURCE, as described in the
previous section, and TRIGGEREVENT. Typically, you populate the TRIGGEREVENT
element with the current value of Sys.sysevent.

The following example shows a typical VARRAY for DDL events.
db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’EVENTSOURCE | ’||Sys.database_name, ’USERNAME | ’||Sys.login_user,
’INSTANCENUM | ’||Sys.instancenum, ’OBJECTTYPE | ’||Sys.dictionary_obj_type,
’OBJECTOWNER | ’||Sys.dictionary_obj_owner);

The following example shows a complete trigger that sends an event to
Netcool/Impact before Oracle executes a CREATE command.
CREATE OR REPLACE TRIGGER ddl_before_create
BEFORE CREATE
ON SCOTT.schema

DECLARE
my_before_create_varray db_varray_type;

BEGIN
my_before_create_varray :=
db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’EVENTSOURCE | ’||Sys.database_name,
’USERNAME | ’||Sys.login_user,’INSTANCENUM | ’||Sys.instancenum,

Chapter 10. Database event listener service 67

’OBJECTTYPE | ’||Sys.dictionary_obj_type,
’OBJECTOWNER | ’||Sys.dictionary_obj_owner);
test_varray_proc(my_before_create_varray);

end;
/

System events triggers
System events are sent to Netcool/Impact when the Oracle server starts up, shuts
down or reports a system level error.

System events only work if the user who owns the corresponding triggers has
SYSDBA privileges (for example, the SYS user).

To send DDL events, you create a trigger that populates a VARRAY with data that
describes the system action. Then, you pass the VARRAY element to the database
client for processing. As with DDL events, system events require the TRIGGEREVENT
element to be populated, typically with the value of Sys.sysevent.

The following example shows a typical VARRAY for system events.
db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’ OBJECTNAME | ’||Sys.database_name,
’ USER_NAME | ’||Sys.login_user,
’ INSTANCE_NUM | ’||Sys.instance_num);

The following example shows a complete trigger that sends an event to
Netcool/Impact at Oracle startup.
CREATE OR REPLACE TRIGGER databasestartuptrigger
AFTER STARTUP
ON database

BEGIN
v_array_inp := db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’ OBJECTNAME | ’||Sys.database_name,
’ USER_NAME | ’||Sys.login_user, ’ INSTANCE_NUM | ’||Sys.instance_num);
test_varray_proc(v_array_inp);

User events triggers
User events are sent to Netcool/Impact when a user logs in to or out of Oracle.

To send user events, you create a trigger that populates a VARRAY with data that
describes the user action. Then, you pass the VARRAY element to the database client
for processing. As with system events, user events require the TRIGGEREVENT
element to be populated, typically with the value of Sys.sysevent. If you do not
specify a value for the EVENTSOURCE element, the database client uses the name of
the database,

The following example shows a typical VARRAY for user events.
db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’EVENTSOURCE |’||Sys.database_name, ’LOGINUSER | ’ ||Sys.login_user,
’INSTANCENUM | ’||Sys.instance_num, ’TRIGGERNAME | USER_LOGIN’);

The following example shows a complete trigger that sends an event to
Netcool/Impact at when a user logs in.
CREATE OR REPLACE TRIGGER user_login
AFTER logon
on schema

DECLARE

68 Netcool/Impact: Solutions Guide

my_login_varray db_varray_type;

BEGIN
my_login_varray := db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’EVENTSOURCE |’||Sys.database_name, ’LOGINUSER | ’ ||Sys.login_user,
’INSTANCENUM | ’||Sys.instance_num, ’TRIGGERNAME | USER_LOGIN’);
test_varray_proc(my_login_varray);

end;
/

Insert event trigger example
This example shows how to create a set of Oracle triggers that send an insert event
to Netcool/Impact.
CREATE OR REPLACE PACKAGE dept_pkg AS
TYPE deptTable IS TABLE OF db_varray_type INDEX BY BINARY_INTEGER;

dept1 deptTable;
emptyDept deptTable;

end;
/

CREATE OR REPLACE TRIGGER dept_reset
BEFORE INSERT OR UPDATE OR DELETE ON dept
BEGIN

dept_pkg.dept1 := dept_pkg.emptyDept;

end;
/

CREATE OR REPLACE TRIGGER dept_after_row
AFTER INSERT ON dept
FOR EACH ROW
BEGIN

dept_pkg.dept1(dept_pkg.dept1.count + 1) :=
db_varray_type(’EVENTSOURCE | SCOTT.DEPT’, ’DEPTNO | ’||:NEW.DEPTNO,
’LOC | ’||:NEW.LOC, ’DNAME | ’||:NEW.DNAME, ’IMPACTED | ’||:NEW.IMPACTED);

end;
/

CREATE OR REPLACE TRIGGER dept_after_stmt
AFTER INSERT OR UPDATE OR DELETE ON dept
BEGIN

for i in 1 .. dept_pkg.dept1.count loop
test_varray_proc(dept_pkg.dept1(i));

end loop;

end;
/

In this example, test_varray_proc is a call spec that publishes the sendEvent()
function exposed by the database client. The type db_varray_type is a user-defined
data type that represents an Oracle VARRAY. The example uses the Oracle SCOTT
sample schema.

Update event trigger example
This example shows how to create a set of Oracle triggers that send an update
event to Netcool/Impact.

Chapter 10. Database event listener service 69

CREATE OR REPLACE PACKAGE dept_pkg AS
TYPE deptTable IS TABLE OF db_varray_type INDEX BY BINARY_INTEGER;

dept1 deptTable;
emptyDept deptTable;

end;
/

CREATE OR REPLACE TRIGGER dept_reset
BEFORE INSERT OR UPDATE OR DELETE ON dept
BEGIN

dept_pkg.dept1 := dept_pkg.emptyDept;

end;
/

CREATE OR REPLACE TRIGGER dept_after_row
AFTER UPDATE ON dept
FOR EACH ROW
BEGIN

dept_pkg.dept1(dept_pkg.dept1.count + 1) :=
db_varray_type(’EVENTSOURCE | SCOTT.DEPT’, ’DEPTNO | ’||:OLD.DEPTNO,
’LOC | ’||:OLD.LOC, ’DNAME | ’||:OLD.DNAME, ’IMPACTED | ’||:OLD.IMPACTED);

end;
/

CREATE OR REPLACE TRIGGER dept_after_stmt
AFTER INSERT OR UPDATE OR DELETE ON dept
BEGIN

for i in 1 .. dept_pkg.dept1.count loop
test_varray_proc(dept_pkg.dept1(i));

end loop;

end;
/

In this example, test_varray_proc is a call spec that publishes the sendEvent()
function exposed by the database client. The type db_varray_type is a user-defined
data type that represents an Oracle VARRAY. The example uses the Oracle SCOTT
sample schema.

Delete event trigger example
This example shows how to create a set of Oracle triggers that send a delete event
to Netcool/Impact.
CREATE OR REPLACE PACKAGE dept_pkg AS
TYPE deptTable IS TABLE OF db_varray_type INDEX BY BINARY_INTEGER;

dept1 deptTable;
emptyDept deptTable;

end;
/

CREATE OR REPLACE TRIGGER dept_reset
BEFORE INSERT OR UPDATE OR DELETE ON dept
BEGIN

dept_pkg.dept1 := dept_pkg.emptyDept;

end;

70 Netcool/Impact: Solutions Guide

/

CREATE OR REPLACE TRIGGER dept_after_row
AFTER DELETE ON dept
FOR EACH ROW
BEGIN

dept_pkg.dept1(dept_pkg.dept1.count + 1) :=
db_varray_type(’EVENTSOURCE | SCOTT.DEPT’, ’DEPTNO | ’||:OLD.DEPTNO,
’LOC | ’||:OLD.LOC, ’DNAME | ’||:OLD.DNAME, ’IMPACTED | ’||:OLD.IMPACTED);

end;
/

CREATE OR REPLACE TRIGGER dept_after_stmt
AFTER INSERT OR UPDATE OR DELETE ON dept
BEGIN

for i in 1 .. dept_pkg.dept1.count loop
test_varray_proc(dept_pkg.dept1(i));

end loop;

end;
/

In this example, test_varray_proc is a call spec that publishes the sendEvent()
function exposed by the database client. The type db_varray_type is a user-defined
data type that represents an Oracle VARRAY. The example uses the Oracle SCOTT
sample schema.

Before create event trigger example
This example shows how to create a trigger that sends an event before Oracle
executes a CREATE command.
CREATE OR REPLACE TRIGGER ddl_before_create
BEFORE CREATE
ON SCOTT.schema

DECLARE
my_before_create_varray db_varray_type;

BEGIN
my_before_create_varray := db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’EVENTSOURCE | ’||Sys.database_name, ’USERNAME | ’||Sys.login_user,
’INSTANCENUM | ’||Sys.instancenum, ’OBJECTTYPE | ’||Sys.dictionary_obj_type,
’OBJECTOWNER | ’||Sys.dictionary_obj_owner);
test_varray_proc(my_before_create_varray);

end;
/

In this example, test_varray_proc is a call spec that publishes the sendEvent()
function exposed by the database client. The type db_varray_type is a user-defined
data type that represents an Oracle VARRAY. The example uses the Oracle SCOTT
sample schema.

After create event trigger example
This example shows how to create a trigger that sends an event after Oracle
executes a CREATE command.
CREATE OR REPLACE TRIGGER ddl_after_create
AFTER CREATE
ON SCOTT.schema

DECLARE

Chapter 10. Database event listener service 71

my_after_create_varray db_varray_type;

BEGIN
my_after_create_varray := db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’EVENTSOURCE | ’||Sys.database_name, ’USERNAME | ’||Sys.login_user,
’INSTANCENUM | ’||Sys.instancenum, ’OBJECTTYPE | ’||Sys.dictionary_obj_type,
’OBJECTOWNER | ’||Sys.dictionary_obj_owner);
test_varray_proc(my_after_create_varray);

end;
/

In this example, test_varray_proc is a call spec that publishes the sendEvent()
function exposed by the database client. The type db_varray_type is a user-defined
data type that represents an Oracle VARRAY. The example uses the Oracle SCOTT
sample schema.

Before alter event trigger example
This example shows how to create a trigger that sends an event before Oracle
executes an ALTER command.
CREATE OR REPLACE TRIGGER ddl_before_alter
BEFORE ALTER
ON SCOTT.schema

DECLARE
my_before_alter_varray db_varray_type;

BEGIN
my_before_alter_varray := db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’EVENTSOURCE | ’||Sys.database_name, ’USERNAME | ’||Sys.login_user,
’INSTANCENUM | ’||Sys.instancenum, ’OBJECTTYPE | ’||Sys.dictionary_obj_type,
’OBJECTOWNER | ’||Sys.dictionary_obj_owner);
test_varray_proc(my_before_alter_varray);

end;
/

In this example, test_varray_proc is a call spec that publishes the sendEvent()
function exposed by the database client. The type db_varray_type is a user-defined
data type that represents an Oracle VARRAY. The example uses the Oracle SCOTT
sample schema.

After alter event trigger example
This example shows how to create a trigger that sends an event after Oracle
executes an ALTER command.
CREATE OR REPLACE TRIGGER ddl_after_alter
AFTER ALTER
ON SCOTT.schema

DECLARE
my_after_alter_varray db_varray_type;

BEGIN
my_after_alter_varray := db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’EVENTSOURCE | ’||Sys.database_name, ’USERNAME | ’||Sys.login_user,
’INSTANCENUM | ’||Sys.instancenum, ’OBJECTTYPE | ’||Sys.dictionary_obj_type,
’OBJECTOWNER | ’||Sys.dictionary_obj_owner);
test_varray_proc(my_after_alter_varray);

end;
/

72 Netcool/Impact: Solutions Guide

In this example, test_varray_proc is a call spec that publishes the sendEvent()
function exposed by the database client. The type db_varray_type is a user-defined
data type that represents an Oracle VARRAY. The example uses the Oracle SCOTT
sample schema.

Before drop event trigger example
This example shows how to create a trigger that sends an event before Oracle
executes an DROP command.
CREATE OR REPLACE TRIGGER ddl_before_drop
BEFORE DROP
ON SCOTT.schema

DECLARE
my_before_drop_varray db_varray_type;

BEGIN
my_before_drop_varray := db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’EVENTSOURCE | ’||Sys.database_name, ’USERNAME | ’||Sys.login_user,
’INSTANCENUM | ’||Sys.instancenum, ’OBJECTTYPE | ’||Sys.dictionary_obj_type,
’OBJECTOWNER | ’||Sys.dictionary_obj_owner);
test_varray_proc(my_before_drop_varray);

end;
/

In this example, test_varray_proc is a call spec that publishes the sendEvent()
function exposed by the database client. The type db_varray_type is a user-defined
data type that represents an Oracle VARRAY. The example uses the Oracle SCOTT
sample schema.

After drop event trigger example
This example shows how to create a trigger that sends an event after Oracle
executes an DROP command.
CREATE OR REPLACE TRIGGER ddl_after_drop
AFTER DROP
ON SCOTT.schema

DECLARE
my_after_drop_varray db_varray_type;

BEGIN
my_after_drop_varray := db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’EVENTSOURCE | ’||Sys.database_name, ’USERNAME | ’||Sys.login_user,
’INSTANCENUM | ’||Sys.instancenum, ’OBJECTTYPE | ’||Sys.dictionary_obj_type,
’OBJECTOWNER | ’||Sys.dictionary_obj_owner);
test_varray_proc(my_after_drop_varray);

end;
/

In this example, test_varray_proc is a call spec that publishes the sendEvent()
function exposed by the database client. The type db_varray_type is a user-defined
data type that represents an Oracle VARRAY. The example uses the Oracle SCOTT
sample schema.

Server startup event trigger example
This example shows how to create a trigger that sends an event to Netcool/Impact
at Oracle startup.
CREATE OR REPLACE TRIGGER databasestartuptrigger
AFTER STARTUP
ON database

Chapter 10. Database event listener service 73

BEGIN
v_array_inp := db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’ OBJECTNAME | ’||Sys.database_name, ’ USER_NAME | ’||Sys.login_user,
’ INSTANCE_NUM | ’||Sys.instance_num);
test_varray_proc(v_array_inp);

In this example, test_varray_proc is a call spec that publishes the sendEvent()
function exposed by the database client. The type db_varray_type is a user-defined
data type that represents an Oracle VARRAY. The example uses the Oracle SCOTT
sample schema.

Server shutdown event trigger example
This example shows how to create a trigger that sends an event to Netcool/Impact
at Oracle shutdown.
CREATE OR REPLACE TRIGGER databaseshutdowntrigger
BEFORE SHUTDOWN
ON database

DECLARE
v_array_inp db_varray_type;

BEGIN
v_array_inp := db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’ OBJECTNAME | ’||Sys.database_name, ’ USER_NAME | ’||Sys.login_user,
’ INSTANCE_NUM | ’||Sys.instance_num);
test_varray_proc(v_array_inp);

end;
/

In this example, test_varray_proc is a call spec that publishes the sendEvent()
function exposed by the database client. The type db_varray_type is a user-defined
data type that represents an Oracle VARRAY. The example uses the Oracle SCOTT
sample schema.

Server error event trigger example
This example shows how to create a trigger that sends an event to Netcool/Impact
when Oracle encounters a server error.
CREATE OR REPLACE TRIGGER server_error_trigger_database
AFTER SERVERERROR
ON database

DECLARE
my_varray db_varray_type;

BEGIN
my_varray := db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’EVENTSOURCE | ’||Sys.database_name, ’INSTANCENUM | ’ ||Sys.instance_num,
’LOGINUSER | ’||Sys.login_user, ’ERRORNUM | ’||Sys.server_error(1));
test_varray_proc(my_varray);

end;
/

In this example, test_varray_proc is a call spec that publishes the sendEvent()
function exposed by the database client. The type db_varray_type is a user-defined
data type that represents an Oracle VARRAY. The example uses the Oracle SCOTT
sample schema.

74 Netcool/Impact: Solutions Guide

Logon event trigger example
This example shows how to create a trigger that sends an event to Netcool/Impact
when a user logs in to the database.
CREATE OR REPLACE TRIGGER user_login
AFTER logon
on schema

DECLARE
my_login_varray db_varray_type;

BEGIN
my_login_varray := db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’EVENTSOURCE |’||Sys.database_name, ’LOGINUSER | ’ ||Sys.login_user,
’INSTANCENUM | ’||Sys.instance_num, ’TRIGGERNAME | USER_LOGIN’);
test_varray_proc(my_login_varray);

end;
/

In this example, test_varray_proc is a call spec that publishes the sendEvent()
function exposed by the database client. The type db_varray_type is a user-defined
data type that represents an Oracle VARRAY. The example uses the Oracle SCOTT
sample schema.

Logoff event trigger example
This example shows how to create a trigger that sends an event to Netcool/Impact
when a user logs out of the database.
CREATE OR REPLACE TRIGGER user_logoff
BEFORE logoff
on schema

DECLARE
my_logoff_varray db_varray_type;

BEGIN
my_logoff_varray := db_varray_type(’TRIGGEREVENT | ’||Sys.sysevent,
’EVENTSOURCE |’||Sys.database_name, ’LOGINUSER | ’ ||Sys.login_user,
’INSTANCENUM | ’||Sys.instance_num, ’TRIGGERNAME | USER_LOGOFF’);
test_varray_proc(my_logoff_varray);

end;
/

In this example, test_varray_proc is a call spec that publishes the sendEvent()
function exposed by the database client. The type db_varray_type is a user-defined
data type that represents an Oracle VARRAY. The example uses the Oracle SCOTT
sample schema.

Writing database event policies
Policies that work with database events can handle incoming events, and return
events to the database.

Handling incoming database events
The database event listener passes incoming events to Netcool/Impact using the
built-in EventContainer variable.

When the database event listener receives an event from the database, it populates
the EventContainer member variables with the values sent by the database trigger

Chapter 10. Database event listener service 75

using the Oracle VARRAY. You can access the values of EventContainer using the
@ or dot notations in the same way you access the field values in any other type of
event.

The following example shows how to handle an incoming database event. In this
example, the event was generated using the example trigger described in “Insert
events triggers” on page 66.
// Log incoming event values

Log("Department number: " + @DEPTNO);
Log("Location: " + @LOC);
Log("Database name: " + @DNAME);
Log("Impacted: " + @IMPACTED);

The example prints the field values in the event to the policy log.

Returning events to the database
The database event listener supports the use of the ReturnEvent function in a
policy to update or delete events. To use ReturnEvent in a database event policy,
you must perform the following tasks:

Procedure
v Make sure that the database trigger that sends the event populates a special set

of connection event fields.
v Call the ReturnEvent function in the policy that handles the events.

Populating the connection event fields
For the policy that handles events to return them to the event source, you must
populate a special set of event fields in the database trigger.

These fields specify connection information for the database server. The database
event listener uses this information to connect to the database when you return an
updated or deleted event.

Table 13 shows the event fields that you must populate in the trigger.

Table 13. Database trigger connection event fields

Field Description

RETURNEVENT You must set a value of TRUE in this event field.

USERNAME User name to use when connecting to the Oracle database server.

PASSWORD Password to use when connecting to the Oracle database server.

HOST Host name or IP address of the system where Oracle is running.

PORT Connection port for the Oracle database server.

SID Oracle server ID.

KEYFIELD Key field in the database table, or any other field that uniquely
identifies a table row.

When the database client sends the event to Netcool/Impact, it encrypts the
connection information (including the database user name and password) specified
in the event fields. The connection information is then unencrypted when it is
received by Netcool/Impact.

76 Netcool/Impact: Solutions Guide

The following example shows a trigger that sends an event to Netcool/Impact
when a new row is inserted into the dept table. In this example, you populate the
connection event fields by specifying elements in the Oracle VARRAY that you
pass to the database.
CREATE OR REPLACE TRIGGER dept_after_row
AFTER INSERT ON dept
FOR EACH ROW
BEGIN

dept_pkg.dept1(dept_pkg.dept1.count + 1) :=
db_varray_type(’EVENTSOURCE | SCOTT.DEPT’, ’DEPTNO | ’||:NEW.DEPTNO,
’LOC | ’||:NEW.LOC, ’DNAME | ’||:NEW.DNAME, ’IMPACTED | ’||:NEW.IMPACTED,
’RETURNEVENT | TRUE’, ’USERNAME | ora_user’, ’PASSWORD | ora_passwd’,
’HOST | ora_host’, ’PORT | 4100’, ’SID | ora_01’, ’KEYFIELD | DEPTNO’);

end;
/

Returning events to the database
You can send updated or deleted events to the database server using the
ReturnEvent function.

ReturnEvent sends the event information to the database event listener, which
assembles an UPDATE or DELETE command using the information. The database
event listener then sends the command to the database server for processing. The
UPDATE or DELETE command updates or deletes the row that corresponds to the
original sent event. For more information about ReturnEvent, see the Policy
Reference Guide.

The following policy example shows how to return an updated event to the
database.
// Log incoming event values

Log("Department number: " + @DEPTNO);
Log("Location: " + @LOC);
Log("Database name: " + @DNAME);
Log("Impacted: " + @IMPACTED);

// Update the value of the Location field

@LOC = "New York City";

// Return the event to the database

ReturnEvent(EventContainer);

The following example shows how to delete an event from the database.
// Set the value of the DeleteEvent variable to true

@DeleteEvent = true; // @DeleteEvent name is case-sensitive

// Set the event field variables required by the database event listener
// in order to connect to Netcool/Impact

// Return the event to the database

ReturnEvent(EventContainer);

Chapter 10. Database event listener service 77

78 Netcool/Impact: Solutions Guide

Chapter 11. OMNIbus event listener service

The OMNIbus event listener service is used to integrate with Netcool/OMNIbus
and receive immediate notifications of fast track events.

The OMNIbus event listener is used to get fast track notifications from OMNIbus
using the Accelerated Event Notification feature of OMNIbus. It receives
notifications through the Insert, Delete, Update, or Control (IDUC) channel. To set
up the Netcool/OMNIbus event listener, you must set its configuration properties
using the GUI. The configuration properties allow you to specify one or more
policies that are to be run when the OMNIbus event listener receives incoming
events from Netcool/OMNIbus. For more information about OMNIbus triggers
and accelerated event notification, see the OMNIbus Administration Guide.

Important:

v The OMNIbus event listener service works only with OMNIbus 7.3 to monitor
ObjectServer events.

v If the Impact Server and OMNIbus server are located in different network
domains, for the OMNIbus event listener service to work correctly, you must set
the Iduc.ListeningHostname property in the OMNIbus server. This property
must contain the IP address or fully qualified hostname of the the OMNIbus
server. For more information about this property, refer to the OMNIbus
documentation.

Setting up the OMNIbus event listener service
Use this procedure to create the OMNIbus event listener service.

Procedure
1. In the Tivoli Integrated Portal, in the navigation tree, click System

Configuration > Event Automation > Services, to open the Services tab.
2. If required, select a cluster from the Cluster list.
3. Click the Create New Service icon in the toolbar and select

OMNIbusEventListener to open the configuration window.
4. Enter the required information in the configuration window.
5. Click the Save icon in the toolbar to create the service.
6. Start the service to establish a connection to the ObjectServer and subscribe to

the IDUC channel to get notifications for inserts, updates, and deletes.

Using the OMNIbus event listener service
Starting the OMNIbus event listener service establishes a connection between
Netcool/Impact and the objectserver.

To ensure that the OMNIbus event listener service started successfully, check the
service logs. A message like the following example is displayed if the service
started:
Initializing Service
Connecting to the Data Source: defaultobjectserver
IDUC Connection: Established:
Iduc Hostname : swordfish

© Copyright IBM Corp. 2006, 2011 79

Iduc Port : 35920
Iduc Spid : 2
Registered for the IDUC Feed
Service Started

Triggers
You must create triggers before Netcool/Impact can receive accelerated events
from Netcool/OMNIbus.

Triggers notify Netcool/Impact of accelerated events. For more information about
creating triggers, refer to the IBM Tivoli Netcool/OMNIbus Administration Guide
available from the following web site:

https://www.ibm.com/developerworks/wikis/display/tivolidoccentral/OMNIbus.

This example shows how to create a trigger to immediately notify Netcool/Impact
when there is an alert with a severity of 5:
create or replace trigger ft_insert1
group trigger_group1
priority 1
after insert on alerts.status
for each row
begin

if (new.Severity >= 5)
then

iduc evtft ’default’ , insert, new
end if;

end;

Another example shows how to create a trigger that sends an accelerated event to
Netcool/Impact when an event with Customer internet_banking is deleted:
create or replace trigger ft_delete1
group trigger_group1
priority 1
before delete on alerts.status
for each row
begin

if (old.Customer = ’internet_banking’)
then

iduc evtft ’default’ , delete, old
end if;

end;

The following example shows how to create a trigger that immediately notifies
Netcool/Impact if a reinsert of the event with the Node as ‘New York' is received:
create or replace trigger ft_reinsert1
group trigger_group1
priority 1
after reinsert on alerts.status
for each row
begin

if (new.Node = ’New York’)
then

iduc evtft ’default’ , insert, new
end if;

end;

The following example shows how to create a signal trigger that notifies you when
a gateway connection is established with the objectserver:

80 Netcool/Impact: Solutions Guide

https://www.ibm.com/developerworks/wikis/display/tivolidoccentral/OMNIbus

create or replace trigger notify_isqlconn
group trigger_group1
priority 1
on signal connect
begin
if(%signal.process = ’GATEWAY’)
then
iduc sndmsg ’default’, ’Gateway Connection from ’
+ %signal.node + ’ from user ’ + %signal.username + ’ at ’ +
to_char(%signal.at)
end if;
end;

Yet another example shows how to create a signal trigger that notifies you when
connection gets disconnected:
create or replace trigger notify_isqldisconn
group trigger_group1
priority 1
on signal disconnect
begin if(%signal.process = ’isql’)
then iduc sndmsg ’default’, ’ISQL Disconnect from ’ + %signal.node +
’ from user ’ + %signal.username + ’ at ’ + to_char(%signal.at)
end if;
end;

Using the ReturnEvent function
You can use the ReturnEvent function to insert, update, or delete events that
Netcool/Impact receives from Netcool/OMNIbus. To read more about the
ReturnEvent function, refer to the Policy Reference Guide.

This example shows how to use the ReturnEvent function to set the Node to
Impacted and to increment the Severity by 1:
@Node = ’Impacted’;
@Severity = @Severity + 1;
ReturnEvent(EventContainer);

Another example shows how to delete the event from alerts.status using the
ReturnEvent function:
@DeleteEvent = TRUE;
ReturnEvent(EventContainer);

Using Spid to control which events get sent over from OMNIbus
Netcool/Impact cannot subscribe to an OMNIbus channel, but you can use the
Spid instead of a channel name to control which events get sent over to
Netcool/Impact.

When the OMNIbusEventListener Service starts, it prints out the details of the
connection in the IMPACT_HOME/log/<servername>_omnibuseventlistener.log,
including the connection Spid. In the following example, the Spid is 2:
21 Feb 2012 11:16:07,363: Initializing Service
21 Feb 2012 11:16:07,363: Connecting to the Data Source: defaultobjectserver
21 Feb 2012 11:16:07,405: Service Started
21 Feb 2012 11:16:07,522: Attempting to connect for IDUC notifications
21 Feb 2012 11:16:07,919: Established connection to the Data Source defaultobjectserver
21 Feb 2012 11:16:08,035: IDUC Connection: Established:
21 Feb 2012 11:16:08,036: Iduc Hostname : nc050094
21 Feb 2012 11:16:08,036: Iduc Port : 60957
21 Feb 2012 11:16:08,036: Iduc Spid : 2

Chapter 11. OMNIbus event listener service 81

Knowing that Netcool/Impact is connected with the Spid 2, you can use the Client
ID, and configure the trigger to send the Accelerated Event Notification only to the
client with Spid=2 (Impact). An OMNIbus trigger has the following syntax:
IDUC EVTFT destination, action_type, row

where:
v destination = spid | iduc_channel

– spid = integer_expression (The literal client connection ID)
– iduc_channel = string_expression (Channel name)

v action_type = INSERT | UPDATE | DELETE
v row = variable (Variable name reference of a row in the automation)

For example, the following trigger would tell OMNIbus to send notifications only
to Spid=2, which in this case is Netcool/Impact:
create or replace trigger ft_insert1
group trigger_group1
priority 1
after insert on alerts.status
for each row
begin
if (new.Severity >= 5)
then
iduc evtft 2 , insert, new
end if;
end;

For more information about OMNIbus triggers and accelerated event notification,
see the “OMNIbus Administration Guide”.

82 Netcool/Impact: Solutions Guide

Chapter 12. Working with other services

This chapter contains information about working with other Netcool/Impact
services.

OMNIbus event listener service
The OMNIbus event listener service is used to integrate with Netcool/OMNIbus
and receive immediate notifications of fast track events.

The OMNIbus event listener is used to get fast track notifications from OMNIbus
using the Accelerated Event Notification feature of OMNIbus. It receives
notifications through the Insert, Delete, Update, or Control (IDUC) channel. To set
up the Netcool/OMNIbus event listener, you must set its configuration properties
using the GUI. The configuration properties allow you to specify one or more
policies that are to be run when the OMNIbus event listener receives incoming
events from Netcool/OMNIbus. For more information about OMNIbus triggers
and accelerated event notification, see the OMNIbus Administration Guide.

Important:

v The OMNIbus event listener service works only with OMNIbus 7.3 to monitor
ObjectServer events.

v If the Impact Server and OMNIbus server are located in different network
domains, for the OMNIbus event listener service to work correctly, you must set
the Iduc.ListeningHostname property in the OMNIbus server. This property
must contain the IP address or fully qualified hostname of the the OMNIbus
server. For more information about this property, refer to the OMNIbus
documentation.

Setting up the OMNIbus event listener service
Use this procedure to create the OMNIbus event listener service.

Procedure
1. In the Tivoli Integrated Portal, in the navigation tree, click System

Configuration > Event Automation > Services, to open the Services tab.
2. If required, select a cluster from the Cluster list.
3. Click the Create New Service icon in the toolbar and select

OMNIbusEventListener to open the configuration window.
4. Enter the required information in the configuration window.
5. Click the Save icon in the toolbar to create the service.
6. Start the service to establish a connection to the ObjectServer and subscribe to

the IDUC channel to get notifications for inserts, updates, and deletes.

Using the OMNIbus event listener service
Starting the OMNIbus event listener service establishes a connection between
Netcool/Impact and the objectserver.

To ensure that the OMNIbus event listener service started successfully, check the
service logs. A message like the following example is displayed if the service
started:

© Copyright IBM Corp. 2006, 2011 83

Initializing Service
Connecting to the Data Source: defaultobjectserver
IDUC Connection: Established:
Iduc Hostname : swordfish
Iduc Port : 35920
Iduc Spid : 2
Registered for the IDUC Feed
Service Started

Triggers
You must create triggers before Netcool/Impact can receive accelerated events
from Netcool/OMNIbus.

Triggers notify Netcool/Impact of accelerated events. For more information about
creating triggers, refer to the IBM Tivoli Netcool/OMNIbus Administration Guide
available from the following web site:

https://www.ibm.com/developerworks/wikis/display/tivolidoccentral/OMNIbus.

This example shows how to create a trigger to immediately notify Netcool/Impact
when there is an alert with a severity of 5:
create or replace trigger ft_insert1
group trigger_group1
priority 1
after insert on alerts.status
for each row
begin

if (new.Severity >= 5)
then

iduc evtft ’default’ , insert, new
end if;

end;

Another example shows how to create a trigger that sends an accelerated event to
Netcool/Impact when an event with Customer internet_banking is deleted:
create or replace trigger ft_delete1
group trigger_group1
priority 1
before delete on alerts.status
for each row
begin

if (old.Customer = ’internet_banking’)
then

iduc evtft ’default’ , delete, old
end if;

end;

The following example shows how to create a trigger that immediately notifies
Netcool/Impact if a reinsert of the event with the Node as ‘New York' is received:
create or replace trigger ft_reinsert1
group trigger_group1
priority 1
after reinsert on alerts.status
for each row
begin

if (new.Node = ’New York’)
then

iduc evtft ’default’ , insert, new
end if;

end;

84 Netcool/Impact: Solutions Guide

https://www.ibm.com/developerworks/wikis/display/tivolidoccentral/OMNIbus

The following example shows how to create a signal trigger that notifies you when
a gateway connection is established with the objectserver:
create or replace trigger notify_isqlconn
group trigger_group1
priority 1
on signal connect
begin
if(%signal.process = ’GATEWAY’)
then
iduc sndmsg ’default’, ’Gateway Connection from ’
+ %signal.node + ’ from user ’ + %signal.username + ’ at ’ +
to_char(%signal.at)
end if;
end;

Yet another example shows how to create a signal trigger that notifies you when
connection gets disconnected:
create or replace trigger notify_isqldisconn
group trigger_group1
priority 1
on signal disconnect
begin if(%signal.process = ’isql’)
then iduc sndmsg ’default’, ’ISQL Disconnect from ’ + %signal.node +
’ from user ’ + %signal.username + ’ at ’ + to_char(%signal.at)
end if;
end;

Using the ReturnEvent function
You can use the ReturnEvent function to insert, update, or delete events that
Netcool/Impact receives from Netcool/OMNIbus. To read more about the
ReturnEvent function, refer to the Policy Reference Guide.

This example shows how to use the ReturnEvent function to set the Node to
Impacted and to increment the Severity by 1:
@Node = ’Impacted’;
@Severity = @Severity + 1;
ReturnEvent(EventContainer);

Another example shows how to delete the event from alerts.status using the
ReturnEvent function:
@DeleteEvent = TRUE;
ReturnEvent(EventContainer);

Policy activator service
The policy activator service activates policies at startup or at the intervals you
specify for each selected policy.

This is a default service that you can use instead of creating your own, or in
addition to creating your own.

Policy activator configuration
In a policy activator you can configure the policy activator name, the activation
interval, the policy you want to run at intervals, and the start up and logging
options.

Chapter 12. Working with other services 85

Policy activator service configuration window
Use this information to configure the policy activator service.

Table 14. Create New Policy Activator Service configuration window

Window element Description

Service name Type a unique name to identify the service.

Activation Interval Select how often (in seconds) the service must activate the
policy. The minimum value is 0; the default value is 10.

Policy Select the policy you want the policy activator to run.

Startup: Automatically when
server starts

Select to automatically start the service when the server
starts. You can also start and stop the service from the
GUI.

Service log: Write to file Select to write log information to a file.

Policy logger service
The policy logger service is responsible for managing the policy log.

The log is a text stream used to record messages generated during the runtime of a
policy. The log contains both Netcool/Impact system messages and messages that
you create when you write a policy. The policy logger service specifies an
error-handling policy to activate when an error occurs during the execution of a
policy. It also specifies the logging levels for debugging policies and which items
must be logged. When you configure this service, you select a policy to handle the
errors as they occur.

Policy logger configuration
You can configure the following properties of the policy logger.
v Error handling policy
v Highest log level
v Logging of SQL statements
v Logging of pre-execution function parameters
v Logging of post-execution function parameters
v Policy profiling
v Logging and reporting options

Policy logger service configuration window
Use this information to configure the policy logger service.

Table 15. Policy Logger Service configuration window

Window element Description

Error-handling Policy The error handling policy is the policy that is run by
default when an error is not handled by an error
handler within the policy where the error occurred.

86 Netcool/Impact: Solutions Guide

Table 15. Policy Logger Service configuration window (continued)

Window element Description

Highest Log Level You can specify a log level for messages that you print
to the policy log from within a policy using the Log
function.

When a log() statement in a policy is processed, the
specified log level is evaluated against the number that
you select for this field. If the level specified in this
field is greater than or equal to the level specified in the
policy log() statement, the message is recorded in the
policy log.

Log what Select what you want to appear in the log:

v All SQL statements. Select to print all the contents of
all SQL statements made in calls to SQL database
data sources. Logging SQL statements can help you
debug a policy that uses external data sources.

v Pre-execution Action Module Parameters. Select to
print the values of all the parameters passed to a
built-in action function before the function is called in
a policy. These parameters include the values of
built-in variables such as DataItems and DataItem.

v Post-execution Action Module Parameters

v All Action Module Parameters

Policy Profiling: Enable Select to enable policy profiling. Policy profiling
calculates the total time that it takes to run a policy and
prints this time to the policy log

You can use this feature to see how long it takes to
process variable assignments and functions. You can
also see how long it takes to process an entire function
and the entire policy.

Service log: Write to file Select to write log information to a file.

You can also enable the collecting of report information
through the service.

Append Thread Name to Log
File Name

Select this option to name the log file by appending the
name of the thread to the default log file name.

Append Policy Name to Log File
Name

Select this option to name the log file by appending the
name of the policy to the default log file name.

Collect Reports: Enable Select to enable data collection for the Policy Reports.

If you choose to enable the Collect Reports option,
reporting related logs are written to the policy logger
file only when the log level is set to 3.

To see reporting related logs for a less detailed logging
level for example, log level 1, the NCHOME/impact/etc/
<servername>_policylogger.props file can be
customized by completing the following steps:

1. Add impact.policylogger.reportloglevel=1 to the
NCHOME/impact/etc/
<servername>_policylogger.props property.

2. Restart the Impact Server to implement the change.

Chapter 12. Working with other services 87

Hibernating policy activator service
The hibernating policy activator service monitors hibernating policies and awakens
them at specified intervals.

You use the hibernating policy activator with X events in Y time solutions and
similar solutions that require the use of hibernating policies. When you configure
this service, you specify how often the service reactivates hibernating policies
waiting to be activated. It can be a specific period or absolute time that you have
defined.

Hibernating policy activator configuration
In the hibernation policy activator you can configure the wakeup interval, and the
start up and logging options.

Hibernating policy activator configuration window
Use this information to configure the hibernating policy activator.

Table 16. Hibernating Policy Activator service configuration window

Window element Description

Polling Interval Select a polling time interval (in seconds) to establish
how often you want the service to check hibernating
policies to see whether they are due to be woken up. The
default value is 3 seconds.

Process wakes up immediately Select to run the policy immediately after wake-up. The
wakeup interval is the interval in seconds at which the
hibernating policy activator checks hibernating policies in
the internal data repository to see if they are ready to be
woken.

Startup: Automatically when
server starts

Select to automatically start the service when the server
starts. You can also start and stop the service from the
GUI.

Service log: Write to file Select to write log information to a file.

Clear All Hibernations: Clear Should it become necessary, click to clear all hibernating
policies from the Impact Server.

Command execution manager service
The command execution manager is the service responsible for operating the
command and response feature.

The service queues JRExecAction function calls to run external commands. The
command execution manager only allows you to specify whether to print the
service log to a file. There are no other configuration properties.

Command execution manager service configuration window
You can configure the command execution manager service to print the service log
to a file.

Command line manager service
Use the command-line manager service to access the Impact Server from the
command line to configure services parameters as well as start and stop services.

88 Netcool/Impact: Solutions Guide

When you configure this service, you specify the port to which you connect when
you use the command line. You can also specify whether you want the service to
start automatically when the Impact Server starts. The command-line manager is
the service that manages the CLI. You can configure the port where the
command-line service runs, and the startup and logging options for the service.

Command line manager service configuration window
Use this information to configure the command line manager service.

Table 17. Command Line Manager Service Configuration window

Window element Description

Port Select a port number where you want to run the service from the list
or type the number. You telnet to this port when you use the CLI. The
default is 2000.

Startup:
Automatically
when server starts

Select to automatically start the service when the server starts. You
can also start and stop the service from the GUI.

Service log: Write
to file

Select to write log information to a file.

Chapter 12. Working with other services 89

90 Netcool/Impact: Solutions Guide

Chapter 13. Working with policies

A policy is a set of operations that you want Netcool/Impact to perform.

Before you begin developing policies, you must be familiar with the policy log,
policy context, and policy scope aspects of the product.

Policy language
You use the Impact Policy Language (IPL), or JavaScript to write the policies that
you want Netcool/Impact to run.

The IPL is a scripting language similar in syntax to programming languages like
C/C++ and Java. It provides a set of data types, built-in variables, control
structures, and functions that you can use to perform a wide variety of event
management tasks. It also allows you to create your own variables and functions,
as in other programming languages.

JavaScript a scripting programming language commonly used to add interactivity
to web pages. It can also be used in browser environments. JavaScript uses the
same programming concepts that are used in IPL to write policies. For more
information about JavaScript syntax, see http://www.w3schools.com/js/
default.asp.

Policy log
The policy log is a text stream that records messages created during the runtime of
a policy.

The messages in the policy log provide information about the system status and
about any exceptions that might occur. You can write custom messages to the log
from within a policy using the Log function.

Policy context
The policy context is the set of all the variables whose values are assigned in the
current policy.

The policy context includes built-in variables such as EventContainer as well as the
variables that you define. You can access the value of this context from within a
policy using the CurrentContext function. This function returns a string that
contains the names and current value of all the variables in the policy.

Policy scope
The scope of all variables in a policy is global.

This means that everywhere you use a function, it will reference the same value,
regardless of whether you use it in the main program body or within a
user-defined function.

© Copyright IBM Corp. 2006, 2011 91

http://www.w3schools.com/js/default.asp
http://www.w3schools.com/js/default.asp

Printing to the policy log
Printing messages to the policy log is one of the most useful capabilities of
Netcool/Impact when it comes to testing and debugging policies.

You print messages to the policy log using the Log function. The Log function takes
the message you want to print as its input parameter.

This example is a version of the classic "Hello, World!" program used to teach
developers how to program in the C programming language. In the C version, you
print Hello, World! to the standard output. You are not permitted to access the
standard output stream using the policy language but you can print the message to
the policy log.

The policy, which consists of a single line, is as follows.
Log("Hello, World!");

Here, you simply call the Log function and pass the string Hello, World! as an
input parameter. As in programming languages like C/C+ and Java, you enclose
string literals in double quotation marks.

When you run the policy, it prints the following message to the policy log:
Hello, World!

User-defined variables
User-defined variables are variables that you define when you write a policy.

You can use any combination of letters and numbers as variable names as long as
the first variable starts with a letter:

You do not need to initialize variables used to store single values, such as strings
or integers. For context variables, you call the NewObject function, which returns a
new context. For event container variables, you call NewEvent. You do not need to
initialize the member variables in contexts and event containers.

The following example shows how to create and reference user-defined variables:
MyInteger = 1;
MyFloat = 123.4;
MyBoolean = True;
MyString = "Hello, World!";

MyContext = NewObject();
MyContext.Member = "1";

MyEvent = NewEvent();
MyEvent.Summary = "Event Summary";

Log(MyInteger + ", " + MyEvent.Summary);

In the example in this section, you create a set of variables and assign values to
them. Then, you use the Log function in two different ways to print the value of
the variables to the policy log.

The first way you use Log is to print out each of the values as a separate call to the
function. The second way is to print out all the variables in the policy context at

92 Netcool/Impact: Solutions Guide

once, using the CurrentContext function. The CurrentContext function returns a
string that contains the names and values of all the variables currently defined in
the policy.
VarOne = "One";
VarTwo = 2;
VarThree = 3.0;
VarFour = VarOne + ", " + VarTwo + ", " + VarThree;

Log(VarOne);
Log(VarTwo);
Log(VarThree);
Log(VarFour);

Log(CurrentContext());

When you run this policy, it prints the following message to the policy log:
One
2
3.0
One, Two, Three
"Prepared with user supplied parameters "=(Escalation=5, EventContainer=(),
VarTwo=Two, VarOne=One, ActionNodeName=TEMP, VarFour=One, Two, Three,
VarThree=Three, ActionType=1)

As shown above, you do not have to declare variables before assigning their values
in the way that you do in languages like C/C++ and Java. Arrays and scalar
variables like integers or strings are created automatically the first time you assign
a value to them. Contexts and event containers, however, must be explicitly created
using the NewObject and NewEvent functions, as described later in this guide.

Array
The array is a native data type that you can use to store sets of related values.

An array in Netcool/Impact represents a heterogeneous set of data, which means
that it can store elements of any combination of data types, including other arrays
and contexts. The data in arrays is stored as unnamed elements rather than as
member variables.

In IPL you assign values to arrays using the curly braces notation. This notation
requires you to enclose a comma-separated list of the values to assign in curly
braces. The values can be specified as literals or as variables whose values you
have previously defined in the policy:
arrayname = {element1, element2, elementn}

Attention: Arrays in IPL and JavaScript are zero-based, which means that the
first element in the array has an index value of 0.

In JavaScript, use the square braces notation to assign array values as a
comma-separated series of numeric, string, or boolean literals:
arrayname = [element1, element2, elementn]

Important: You can create an array of any size by manually defining its elements.
You cannot import it from a file. You cannot have an array in an array unless it is
a multi-dimensional array.

You access the value of arrays using the square bracket notation. This notation
requires you to specify the name of the array followed by the index number of the

Chapter 13. Working with policies 93

element enclosed in square brackets. Use the following syntax to access the
elements of a one-dimensional array and a multi-dimensional array:
arrayname[element index]

arrayname[first dimension element index][second dimension element index]

Examples

Here is an example of a one-dimensional array in IPL:
MyArray = {"Hello, World!", 12345};
Log(MyArray[0] + ", " + MyArray[1]);

Here is an example of a one-dimensional array in JavaScript:
MyArray = ["Hello, World!", 12345];
Log(MyArray[0] + ", " + MyArray[1]);

It prints the following text to the policy log:
Hello.World!, 12345

Here in an example of a two-dimensional array in IPL:
MyArray = {{"Hello, World!", 12345}, {"xyz", 78, 7, "etc"}};
Log(MyArray[0][0] + "." + MyArray[1][0]);

Here in an example of a two-dimensional array in JavaScript:
MyArray = [["Hello, World!", 12345], ["xyz", 78, 7, "etc"]];
Log(MyArray[0][0] + "." + MyArray[1][0]);

It prints the following text to the policy log:
Hello.World!.xyz

This example policy in IPL, uses the same two-dimensional array and prints the
label and the value of an element to the parser log:
MyArray = {{"Hello, World!", 12345}, {"xyz", 78, 7, "etc"}};
log("MyArray is " + MyArray);
log("MyArray Length is " + length(MyArray));
ArrayA = MyArray[0];
log("ArrayA is " + ArrayA + " Length is " + length(ArrayA));
i = 0;
While(i < length(ArrayA)) {

log("ArrayA["+i+"] = " + ArrayA[i]);
i = i+1;

}
ArrayB = MyArray[1];
log("ArrayB is " + ArrayB + " Length is " + length(ArrayB));
i = 0;
While(i < length(ArrayB)) {

log("ArrayB["+i+"] = " + ArrayB[i]);
i = i+1;

}

This example policy in JavaScript, uses the same two-dimensional array and prints
the label and the value of an element to the parser log:
MyArray = [["Hello, World!", 12345], ["xyz", 78, 7, "etc"]];
log("MyArray is " + MyArray);
log("MyArray Length is " + Length(MyArray));
ArrayA = MyArray[0];
Log("ArrayA is " + ArrayA + " Length is " + Length(ArrayA));
i = 0;
while(i < Length(ArrayA)) {

Log("ArrayA["+i+"] = " + ArrayA[i]);

94 Netcool/Impact: Solutions Guide

i = i+1;
}
ArrayB = MyArray[1];
Log("ArrayB is " + ArrayB + " Length is " + Length(ArrayB));
i = 0;
while(i < length(ArrayB)) {

Log("ArrayB["+i+"] = " + ArrayB[i]);
i = i+1;

}

Here is the output in the parser log:
ArrayA[0] = Hello World!
ArrayA[1] = 12345

In the following policy, you assign a set of values to arrays and then print the
values of their elements to the policy log.
Array1 = {"One", "Two", "Three", "Four",
"Five"};
Array2 = {1, 2, 3, 4, 5};
Array3 = {"One", 2, "Three", 4, "Five"};

String1 = "One";
String2 = "Two";
Array4 = {String1, String2};

Log(Array1[0]);
Log(Array2[2]);
Log(Array3[4]);
Log(Array4[1]);

Log(CurrentContext());

Here, you assign sets of values to four different arrays. In the first three arrays,
you assign various string and integer literals. In the fourth array, you assign
variables as the array elements.

When you run the policy, it prints the following message to the policy log:
One
3
4
Two
"Prepared with user supplied parameters "=(String2=Two, ActionType=1,
String1=One, EventContainer=(), ActionNodeName=TEMP, Escalation=6,
Array4={One, Two}, Array3={One, 2, Three, 4, Five}, Array2={1, 2,
3, 4, 5},
Array1={One, Two, Three, Four, Five})

Context
Context is a data type that you can use to store sets of data.

Contexts are like the struct data type in C/C++. Contexts can be used to store
elements of any combinations of data types, including other contexts and arrays.
This data is stored in a set of variables called member variables that are
"contained" inside the context. Member variables can be of any type, including
other contexts.

You reference member variables using the dot notation. This is also the way that
you reference member variables in a struct in languages like C and C++. In this
notation, you specify the name of the context and the name of the member variable

Chapter 13. Working with policies 95

separated by a period (.). You use this notation when you assign values to member
variables and when you reference the variables elsewhere in a policy.

Important: A built-in context is provided, called the policy context, that is created
automatically whenever the policy is run. The policy context contains all of the
variables used in the policy, including built-in variables.

Unlike arrays and scalar variables, you must explicitly create a context using the
NewObject function before you can use it in a policy. You do not need to create the
member variables in the context. Member variables are created automatically the
first time you assign their value.

The following example shows how to create a new context, and how to assign and
reference its member variables:
MyContext = NewObject();
MyContext.A = "Hello, World!";
MyContext.B = 12345;

Log(MyContext.A + ", " + MyContext.B);

This example prints the following message to the policy log:
Hello, World!, 12345

The following policy shows how to create a context called MyContext and assign a
set of values to its member variables.
MyContext
= NewObject();

MyContext.One = "One";
MyContext.Two = 2;
MyContext.Three = 3.0;

String1 = MyContext.One + ", " + MyContext.Two + ", " + MyContext.Three;

Log(String1)

When you run this policy, it prints the following message to the policy log:
One, 2, 3.0

If statements
You use the if statement to perform branching operations.

Use the if statement to control which statements in a policy are executed by
testing the value of an expression to see if it is true. The if statement in the Impact
Policy Language is the same as the one used in programming languages like
C/C++ and Java.

The syntax for an if statement is the if keyword followed by a Boolean expression
enclosed in parentheses. This expression is followed by a block of statements
enclosed in curly braces. Optionally, the if statement can be followed by the else
or elseif keywords, which are also followed by a block of statements.
if (condition){

statements
} elseif (condition){

96 Netcool/Impact: Solutions Guide

statements
} else {

statements
}

Where condition is a boolean expression and statements is a group of one or
more statements. For example:
if (x == 0) {

Log("x equals zero");
} elseif (x == 1){

Log("x equals one");
} else {

Log("x equals any other value.");
}

When the if keyword is encountered in a policy, the Boolean expression is
evaluated to see if it is true. If the expression is true, the statement block that
follows is executed. If it is not true, the statements is skipped in the block. If an
else statement follows in the policy, the corresponding else statement block is
executed.

In this example policy, you use the if statement to test the value of the Integer1
variable. If the value of Integer1 is 0, the policy runs the statements in the
statement block.
Integer1 = 0;

if (Integer1 == 0) {
Log("The value of Integer1 is zero.");

}

When you run this policy, it prints the following message to the policy log:
The value of Integer1 is zero.

Another example shows how to use the else statement. Here, you set the value of
the Integer1 variable to 2. Since the first test in the if statement fails, the
statement block that follows the else statement is executed.
Integer1 = 2;

if (Integer1 == 1) {
Log("The value of Integer1 is one.");

} else {
Log("The value of Integer1 is not one.");

}

When you run this example, it prints the following message to the policy log:
The value of Integer1 is not one.

While statements
You use the while statement to loop over a set of instructions until a certain
condition is met.

The while statement allows you to repeat a set of operations until a specified
condition is true. The while statement in the Impact Policy Language is the same
as the one used in programming languages like C, C++, and Java.

Chapter 13. Working with policies 97

The syntax for the while statement is the while keyword followed by a Boolean
expression enclosed in parentheses. This expression is followed by a block of
statements enclosed in curly braces.
while (condition) { statements }

where condition is a boolean expression and statements is a group of one or more
statements. For example:
I = 10;
while(I > 0) {

Log("The value of I is: " + I);
I = I - 1;

}

When the while keyword is encountered in a policy, the Boolean expression is
evaluated to see if it is true. If the expression is true, the statements in the
following block are executed. After the statements are executed, Netcool/Impact
again tests the expression and continues executing the statement block repeatedly
until the condition is false.

The most common way to use the while statement is to construct a loop that is
executed a certain number of times depending on other factors in a policy. To use
the while statement in this way, you use an integer variable as a counter. You set
the value of the counter before the while loop begins and decrement it inside the
loop. The While statement tests the value of the counter each time the loop is
executed and exits when the value of the counter is zero.

The following example shows a simple use of the while statement:
Counter = 10;

while (Counter > 0) {
Log("The value of Counter is " + Counter);
Counter = Counter - 1;

}

Here, you assign the value of 10 to a variable named Counter. In the while
statement, the policy tests the value of Counter to see if it is greater than zero. If
Counter is greater than zero, the statements in the block that follows is executed.
The final statement in the block decrements the value of Counter by one. The
While loop in this example executes 10 times before exiting.

When you run this example, it prints the following message to the policy log:
The value of Counter is 10
The value of Counter is 9
The value of Counter is 8
The value of Counter is 7
The value of Counter is 6
The value of Counter is 5
The value of Counter is 4
The value of Counter is 3
The value of Counter is 2
The value of Counter is 1

The following example shows how to use the While statement to iterate through
an array. You often use this technique when you handle data items retrieved from
a data source.
MyArray = {"One", "Two", "Three", "Four"};

Counter = Length(MyArray);

98 Netcool/Impact: Solutions Guide

while (Counter > 0) {
Index = Counter - 1;
Log(MyArray[Index]);
Counter = Counter - 1;
}

Here, you set the value of Counter to the number of elements in the array. The
While statement loops through the statement block once for each array element.
You set the Index variable to the value of the Counter minus one. This is because
arrays in IPL are zero-based. This means that the index value of the first element is
0, rather than 1.

When you run this example, it prints the following message to the policy log:
Four
Three
Two
One

In these examples, when you use this technique to iterate through the elements in
an array, you access the elements in reverse order. To avoid doing this, you can
increment the counter variable instead of decrementing it in the loop. This requires
you to test whether the counter is less than the number of elements in the array
inside the While statement.

The following example shows how to loop through an array while incrementing
the value of the counter variable.
MyArray = {"One", "Two", "Three", "Four"};

ArrayLength = Length(MyArray);
Counter = 0;

while (Counter < ArrayLength) {
Log(MyArray[Counter]);
Counter = Counter + 1;

}

When you run this policy, it prints the following message to the policy log:
One
Two
Three
Four

User-defined functions
User-defined functions are functions that you use to organize your code in the
body of a policy.

Once you have defined a function, you can call it in the same way as the built-in
action and parser functions. Variables passed to a function are passed by reference,
rather than by value. This means that changing the value of a variable within a
function also changes the value of the variable in the general scope of the policy.

User-defined functions cannot return a value as a return parameter. You can return
a value by defining an output parameter in the function declaration and then
assigning a value to the variable in the body of the function. Output parameters
are specified in the same way as any other parameter.

Chapter 13. Working with policies 99

You can also declare your own functions and call them within a policy.
User-defined functions help you encapsulate and reuse functionality in your policy.

The syntax for a function declaration is the Function keyword followed by the
name of the function and a comma-separated list of input parameters. The list of
input parameters is followed by a statement block enclosed in curly braces.

Unlike action and parser functions, you cannot specify a return value for a
user-defined function. However, because the scope of variables in IPL policy is
global, you can approximate this functionality by setting the value of a return
variable inside the function.

Function declarations must appear in a policy before any instance where the
function is called. The best practice is to declare all functions at the beginning of a
policy.

The following example shows how to declare a user-defined function called
GetNodeByHostname. This function looks up a node in an external data source using
the supplied host name.
Function GetNodeByHostName(Hostname) {

DataType = "Node";
Filter = "Hostname =’" + Hostname + "’";
CountOnly = False;

MyNodes = GetByFilter(DataType, Filter, CountOnly);
MyNode[0] = MyNodes;

}

You call user-defined functions in the same way that you call other types of
functions. The following example shows how to call the function declared above.
GetNodeByHostName("ORA_HOST_01");

Here, the name of the node that you want to look up is ORA_HOST_01.The function
looks up the node in the external data source and returns a corresponding data
item named MyNode. For more information about looking up data and on data
items, see the next chapter in this book.

Function declarations

Function declarations are similar to those in scripting languages like JavaScript.
Valid function names can include numbers, characters and underscores, but cannot
start with a number.

The following is an example of a user-defined function:
Function MyFunc(DataType, Filter, MyArray) {

MyArray = GetByFilter(DataType, Filter, False);
}

Calling user-defined functions

You can call a user-defined function as follows:
Funcname([param1, param2 ...])

The following example shows a user-defined function call:
MyFunc("User", "Location = ’New York’", Users);

100 Netcool/Impact: Solutions Guide

Examples of user-defined functions

The following example show how variables are passed to a function by reference:
// Example of vars by reference

Function IncrementByA(NumberA, NumberB) {
NumberB = NumberB + NumberA;

}

SomeInteger = 10;
SomeFloat = 100.001;

IncrementByA(SomeInteger, SomeFloat);

Log("SomeInteger is now: " + SomeInteger);
// will return: IntegerA is now 10

Log("SomeFloat is now: " + SomeFloat);
// will return: FloatB is now 110.001

The following example shows how policies handle return values in user-defined
functions:
// Example of no return output

Function LogTime(TimeToLog) {
If (TimeToLog == NULL) {

TimeToLog = getdate();
}
Log("At the tone the time will be: "+ localtime(TimeToLog));

}

LoggedTime = LogTime(getdate());

Log("LoggedTime = "+LoggedTime);

// will return: "LoggedTime = NULL" as nothing can be
// returned from user functions

Scheduling policies
You can set up Netcool/Impact to run policies at specific times.

Running policies using the policy activator
You can use a policy activator service to run one policy at specified intervals
during Netcool/Impact run time.

For example, if you want to run a policy named CHECK_SYSTEM_STATUS every 60
minutes during the day, create a policy activator, specify the name of the policy
and the time interval. Then start the service in the GUI Server. If you want to run a
different policy at specific times of day or week, you must use schedules.

Running policies using schedules
You can use schedules with a policy activator to run one or more policies at
specific times.

Procedure
1. Create a schedule.

Chapter 13. Working with policies 101

The first step in setting up policies to run at specific times is to create a
schedule data type in the GUI. For more information, see “Creating a schedule
data type.”

2. Create an internal data type that represents each policy as a task.
After you create the schedule data type, you must create a data type that
represents each policy as a task. The task data type can be an internal data type
and typically has two user-defined fields. A field that contains a descriptive
name for the task and one that contains the name of the policy associated with
the task. For more information, see “Creating task data types.”

3. Create task data items.
After you create the task data type, the next step is to create a task data item
for each policy that you want to schedule. For more information, see “Creating
task data items” on page 103.

4. Add the tasks to the schedule.
After you have created the task data items, the next step is to add the tasks to
the schedule that you created at the beginning. This requires you to specify the
task that you want to schedule and the date or time at which you want the
associated policy to be run. For more information, see “Adding the tasks to the
schedule” on page 103.

5. Specify time ranges for each task.
6. Write a top scheduler policy that launches the tasks.

A top scheduler policy is a policy that is responsible for checking the schedule
to see whether any other policy is currently due to be run. For more
information, see “Writing a top scheduler policy” on page 104.

7. Create a policy activator and configure it to run the top scheduler.
The policy activator runs the top scheduler policy at intervals. When the top
scheduler policy runs, it checks to see if any other policies are currently "on
call" and then runs them. You can configure the policy activator to run at any
interval of time. For more accurate timing of scheduled policies, use smaller
intervals. For more information, see “Creating a policy activator” on page 104.

8. Start the policy activator.
To start the policy activator, click the Start Service icon associated with the new
policy activator where it is displayed in the Services tab in the toolbar.

Creating a schedule data type
You can create a schedule data type in the GUI Server.

Procedure
1. In the navigation tree, expand System Configuration > Event Automation click

Data Model to open the Data Model tab.
2. Select a cluster from the Cluster list. From the Project list, select Global.
3. In the Data Model tab, click Schedule, right click and select New Data Type to

open the New Data Type for Schedule tab.
4. Enter a unique name for the schedule in the Data Type Name field.
5. Click the Save icon to implement to create the schedule data type.

Creating task data types
Use this procedure to create the task data type.

102 Netcool/Impact: Solutions Guide

Procedure
1. In the navigation tree, expand System Configuration > Event Automation click

Data Model to open the Data Model tab.
2. Select a cluster and a project from theCluster and Project lists.
3. In the Data Model tab, click Internal, right click and select New Data Type to

open the New Data Type for Internal tab.
4. Enter a unique name for the data type in the Data Type Name field, for

example, Tasks.
5. Create new fields that contain a descriptive title for the task and the name of

the policy as follows:
a. Click New Field to open the New field window.

Use this window to define the attributes for the data type fields.
b. Enter a unique ID in the ID field, for example, TaskName or PolicyName.
c. From the Format list, select String.

The Display Name and Description fields in this window are optional. For
fields in internal data types, the actual name and display name must always
be the same as the field ID. If you leave these fields empty, they will be
automatically populated with the ID value.

d. Click OK to save the changes and return to the data type tab.
6. From the Display Name Field list, select the field that contains the task name.

This display name is displayed when you browse data items in the data type. It
does not otherwise affect the behavior of the data type.

7. Click the Save icon to implement the changes and to create the task data type.

Creating task data items
Use this procedure to create a task data item.

Procedure
1. In the navigation tree, expand System Configuration > Event Automation click

Data Model to open the Data Model tab.
2. Select a cluster and a project from theCluster and Project lists.
3. In the Data Model tab, expand the Internal data type, select the task data item,

right click and select View Data Items.
4. Click the New icon on the menu.
5. Enter values for the Key field and for the task name and policy name fields that

you defined when you create the tasks data type. The value for the Key field
can be the same as the task name. However, if the data items are created in the
internal data type or any other data type to be used in the schedule
configuration, the Key field must be unique across the data type and all tasks
and policies.

6. Click OK. Then click Save to create the data item.

Adding the tasks to the schedule
Use this procedure to add a task to the schedule.

Procedure
1. In the navigation tree, expand System Configuration > Event Automation

click Data Model to open the Data Model tab.
2. In the Data Model tab, expand Schedule data source, select the schedule task

you created, then right click and select New Data Items to open the Data
items: Schedule tab.

Chapter 13. Working with policies 103

3. Click New to open the Schedule Editor.
4. In the Schedule Name field, enter a name for the schedule.
5. Add a description to the Description field.
6. From the Edit Members By Type list, select the name of the task data type

that you created and click Edit.
7. In the Select Schedule Members window that opens, select the tasks that you

want to schedule and click Add.
8. Click OK.
9. In the Schedule Editor window, select the task that you want to schedule in

the Schedule Members list.
10. Select the type of time range you want to associate with the task from the

Add New Time Range list and then click New . The possible types of time
ranges are Daily, Weekly and Absolute.

11. In the Edit Time Range window that opens, specify the time range and time
zone during which you want the policy to run. The exact time at which the
policy is run depends on both this time range and the frequency at which the
policy activator runs the top scheduler policy. Click OK.

12. Click OK again to exit the Schedule Editor window.

Writing a top scheduler policy
A top scheduler policy is a policy that is responsible for checking the schedule to
see whether any other policy is currently due to be run.

It is also responsible for launching the policy. The top scheduler policy calls the
GetScheduleMember function and retrieves the task data item that is currently "on
call." It then obtains the name of the policy associated with the task and runs it
using the Activate function.

The following example shows a typical top scheduler policy. In this example, the
name of the schedule data type is Schedule and the name of the schedule itself is
TasksSchedule. The Tasks data type contains a field named PolicyName that
specifies the name of the policy to run.
// Call GetByKey and retrieve the schedule data item that contains
// the schedule of tasks

DataType = "Schedule";
Key = "TasksSchedule";
MaxNum = 1;

Schedules = GetByKey(DataType, Key, MaxNum);

// Call GetScheduleMember and retrieve the task that is currently
// "on call"

Tasks = GetScheduleMember(Schedules[0], 0, False, GetDate());

// Call Activate and launch the policy associated with the task

Activate(Null, Tasks[0].PolicyName);

Creating a policy activator
Use this procedure to create the policy activator.

Procedure
1. In the navigation tree, expand System Configuration > Event Automation click

Services to open the Services tab.

104 Netcool/Impact: Solutions Guide

2. In the Services tab, click the Create New Service icon on the toolbar. Click
Policy Activator to open the New Policy Activator tab.

3. In the Service Name field, enter a unique name for the policy activator.
4. In the Activation Interval field, enter the interval in seconds at which you

want the policy activator to run the top scheduler policy
5. From the Policy list, select the top scheduler policy that you created.
6. Select the Startup check box if you want the policy activator to run

automatically when the server starts.
7. Select the Service Log check box if you want to write the service logs to a file.
8. Click the Save icon on the toolbar to create the policy activator.

Chapter 13. Working with policies 105

106 Netcool/Impact: Solutions Guide

Chapter 14. Handling events

From within an IPL policy, you can access and update field values of incoming
events; add journal entries to events; send new events to the event source; and
delete events in the event source.

Events overview
An event is a set of data that represents a status or an activity on a network. The
structure and content of an event varies depending on the device, system, or
application that generated the event but in most cases, events are
Netcool/OMNIbus alerts.

These events are generated by Netcool probes and monitors, and are stored in the
ObjectServer database. Events are obtained using event readers, event listeners,
and e-mail readers services.

Incoming event data using are stored using the built-in EventContainer variable.
This variable is passed to the policy engine as part of the context when a policy is
executed. When you write a policy, you can access the fields in the event using the
member variables of EventContainer.

Event containers
The event container is a native Netcool/Impact data type used to store event data.

The event container consists of a set of event field and event state variables.

EventContainer variable
The EventContainer is a built-in variable that stores the field data for incoming
events.

Each time an event is passed to the policy engine for processing, it creates an
instance of EventContainer, populates the event field variables and stores it in the
policy context. You can then access the values of the event fields from within the
policy.

Event field variables
Event field variables are member variables of an event container that store the field
values in an event.

There is one event field variable for each field in an event. The names of event
field variables are the same as the event field names. For example, if an event has
fields named AlertKey, Node, Severity, and Summary, the corresponding event
container has event field variables with the same names.

© Copyright IBM Corp. 2006, 2011 107

Event state variables
Event state variables are a set of predefined member variables that you can use to
specify the state of an event when you send it to the event source using the
ReturnEvent function.

Two event state variables are used: JournalEntry and DeleteEvent. For information
about using JournalEntry, see “Adding journal entries to events” on page 109. For
information about using DeleteEvent, see “Deleting events” on page 110.

User-defined event container variables
User-defined event container variables are variables that you create using the
NewEvent function.

You use these variables when you send new events to the event source, or when
you want to temporarily store event data within a policy.

Accessing event fields
You can use either the dot notation or the @ notation to access the values of event
fields.

Using the dot notation
You use the dot notation to access the value of event fields in the same way you
access the values of member variables in a struct in languages like C and C++.

The following policy shows how to use the dot notation to access the value of the
Node, Severity, and Summary fields in an incoming event and print them to the
policy log:
Log(EventContainer.Node);
Log(EventContainer.Severity);
Log(EventContainer.Summary);

Using the @ notation
If you are using IPL, you can use the @ notation to access event fields.

The @ notation is shorthand that you can use to reference the event fields in the
built-in EventContainer variable without having to spell out the EventContainer
name. If you are using JavaScript you must use EventContainer.Identifier.

The following policy shows how to use the @ notation to access the value of the
Node, Severity, and Summary fields in an incoming event and print them to the
policy log:
Log(@Node);
Log(@Severity);
Log(@Summary);

Updating event fields
To update fields in an incoming event, you assign new values to event field
variables in the EventContainer.

An event with a new value assigned to its field variable will not be updated until
you call the ReturnEvent function.

108 Netcool/Impact: Solutions Guide

The following examples show how to update the Summary and Severity fields in an
incoming event.
@Summary = "Node down";
@Summary = @Summary + ": Updated by Netcool/Impact";
@Severity = 3;
@Severity = @Severity + 1;

Adding journal entries to events
You can use IPL and JavaScript to add journal entries to existing
Netcool/OMNIbus events.

About this task

You can only add journal entries to events that exist in the ObjectServer database.
You cannot add journal entries to new events that you have created using the
NewEvent function in the currently running policy. Follow these steps to add a
journal entry to an event.

Procedure
1. Assign the journal text to the JournalEntry variable.

JournalEntry is an event state variable used to add new journal entries to an
existing event. For more information, see “Assigning the JournalEntry
variable.”

2. Send the event to the event source using the ReturnEvent function.
Call ReturnEvent and pass the event container as an input parameter, in the
following manner:
ReturnEvent(EventContainer);

Example

The following example shows how to add a new journal entry to an incoming
event.
// Assign the journal entry text to the JournalEntry variable

@JournalEntry = ’Modified on ’ + LocalTime(GetDate()) + "\r\n" +
’Modified by Netcool\Impact.’;

// Send the event to the event source using ReturnEvent

ReturnEvent(EventContainer);

Assigning the JournalEntry variable
JournalEntry is an event state variable used to add new journal entries to an
existing event.

Netcool/Impact uses special rules for interpreting string literals assigned to
JournalEntry. Text stored in JournalEntry must be assigned using single quotation
marks, except for special characters such as \r, \n and \t, which must be assigned
using double quotation marks. If you want to use both kinds of text in a single
entry, you must specify them separately and then concatenate the string using the
+ operator.

To embed a line break in a journal entry, you use an \r\n string.

Chapter 14. Handling events 109

The following examples show how to assign journal text to the JournalEntry
variable.
@JournalEntry = ’Modified by Netcool/Impact’;
@JournalEntry = ’Modified on ’ + LocalTime(GetDate());
@JournalEntry = ’Modified on ’ + LocalTime(GetDate()) + "\r\n" +
’Modified by Netcool/Impact’;

Sending new events
Use this procedure to send new events to an event source.

Procedure
1. Create an event container using the NewEvent function

To create an event container, you call the NewEvent function and pass the name
of the event reader associated with the event source, in the following manner:
MyEvent = NewEvent("defaulteventreader");

The function returns an empty event container.
2. Populate the event fields by assigning values to its event field variables.

For example:
MyEvent.Node = "192.168.1.1";
MyEvent.Summary = "Node down";
MyEvent.Severity = 5;
MyEvent.AlertKey = MyEvent.Node + ":" + MyEvent.Summary;

3. Send the event to the data source using the ReturnEvent function.
Call the ReturnEvent function, and pass the new event container as an input
parameter, in the following manner:
ReturnEvent(MyEvent);

Example

The following example shows how to create, populate, and send a new event to an
event source.
// Create a new event container

MyEvent = NewEvent("defaulteventreader");

// Populate the event container member variables

MyEvent.Node = "192.168.1.1";
MyEvent.Summary = "Node down";
MyEvent.Severity = 5;
MyEvent.AlertKey = MyEvent.Node + ":" + MyEvent.Summary;

// Add a journal entry (optional)

MyEvent.JournalEntry = ’Modified on ’ + LocalTime(GetDate()) + "\r\n" +
’Modified by Netcool/Impact";

// Send the event to the event source

ReturnEvent(MyEvent);

Deleting events
Use this procedure to delete an incoming event from the event source.

110 Netcool/Impact: Solutions Guide

Procedure
1. Set the DeleteEvent variable in the event container.

The DeleteEvent variable is an event state variable that you use to specify that
an event is to be deleted when it is sent back to the event source. You must set
the value of DeleteEvent to True in order for an event to be deleted. For
example:
@DeleteEvent = True;

2. Send the event to the event source using the ReturnEvent function.
For example:
ReturnEvent(EventContainer);

Examples of deleting an incoming event from the event
source

These examples show how to delete an incoming event from the event source
using IPL, and JavaScript.
v Impact Policy Language:

// Set the DeleteEvent Variable

@DeleteEvent = True;

// Send the event to the event source

ReturnEvent(EventContainer);

v JavaScript:
// Set the DeleteEvent Variable

EventContainer.DeleteEvent = true;

// Send the event to the event source

ReturnEvent(EventContainer);

Chapter 14. Handling events 111

112 Netcool/Impact: Solutions Guide

Chapter 15. Handling data

You can handle data in a policy.

From within a policy you can retrieve data from a data source by filter, by key, or
by link; delete, or add data to a data source; update data in a data source; and call
database functions, or stored procedures.

You can access data stored in a wide variety of data sources. These include many
commercial databases, such as Oracle, Sybase, and Microsoft SQL Server. You can
also access data stored in LDAP data source and data stored by various third-party
applications, including network inventory managers and messaging systems.

Data items
Data items are elements of the data model that represent actual units of data stored
in a data source.

The structure of this unit of data depends on the category of the associated data
source. For example, if the data source is an SQL database data type, each data
item corresponds to a row in a database table. If the data source is an LDAP
server, each data item corresponds to a node in the LDAP hierarchy.

Field variables
Field variables are member variables in a data item. There is one field variable for
each data item field. Field variable names are the same as the names in the
underlying data item fields. For example, if you have a data item with two fields
named UserID and UserName, it will also have two field variables named UserID
and UserName.

DataItem and DataItems variables
The DataItems variable is a built-in variable of type array that is used by default to
store data items returned by GetByFilter, GetByKey, GetByLinks or other functions
that retrieve data items. If you do not specify a return variable when you call these
functions, Netcool/Impact assigns the retrieved data items to the DataItems
variable.

The DataItem variable references the first item (index 0) in the DataItems array.

Retrieving data by filter
Retrieving data by filter means that you are getting data items from a data type
where you already know the value of one or more of the fields.

When you retrieve data by filter, you are saying: "Give me all the data items in this
type, where certain fields contain these values."

Filters
A filter is a text string that sets out the conditions under which Netcool/Impact
retrieves the data items.

© Copyright IBM Corp. 2006, 2011 113

The use of filters with internal, SQL, LDAP, and some Mediator data types is
supported. The format of the filter string varies depending on the category of the
data type.

SQL filters
SQL filters are text strings that you use to specify a subset of the data items in an
internal or SQL database data type.

For SQL database and internal data types, the filter is an SQL WHERE clause that
provides a set of comparisons that must be true in order for a data item to be
returned. These comparisons are typically between field names and their
corresponding values.

Syntax

For SQL database data types, the syntax of the SQL filter is specified by the
underlying data source. The SQL filter is the contents of an SQL WHERE clause
specified in the format provided by the underlying database. When the data items
are retrieved from the data source, this filter is passed directly to the underlying
database for processing.

For internal data types, the SQL filter is processed internally by the policy engine.
For internal data types, the syntax is as follows:
Field

Operator
Value [AND | OR | NOT (Field
Operator
Value) ...]

where Field is the name of a data type field, Operator is a comparative operator,
and Value is the field value.

Attention: Note that for both internal and SQL data types, any string literals in
an SQL filter must be enclosed in single quotation marks. The policy engine
interprets double quotation marks before it processes the SQL filter. Using double
quotation marks inside an SQL filter causes parsing errors.

Operators

The type of comparison is specified by one of the standard comparison operators.
The SQL filter syntax supports the following comparative operators:
v >
v <
v =
v <=
v =>
v !=
v LIKE

Restriction: You can use the LIKE operator with regular expressions as
supported by the underlying data source.

The SQL filter syntax supports the AND, OR and NOT boolean operators.

114 Netcool/Impact: Solutions Guide

Tip: Multiple comparisons can be used together with the AND, OR, and NOT
operators.

Order of operation

You can specify the order in which expressions in the SQL are evaluated using
parentheses.

Examples

Here is an example of an SQL filter:
Location = ’NYC’
Location LIKE ’NYC.*’
Facility = ’Wandsworth’ AND Facility = ’Putney’
Facility = ’Wall St.’ OR Facility = ’Midtown’
NodeID >= 123345
NodeID != 123234

You can use this filter to get all data items where the value of the Location field is
New York:
Location = ’New York’

Using this filter you get all data items where the value of the Location field is New
York or New Jersey:
Location = ’New York’ OR Location = ’New Jersey’

To get all data items where the value of the Location field is Chicago or Los
Angeles and the value of the Level field is 3:
(Location = ’New York’ OR Location = ’New Jersey’) AND Level = 3

LDAP filters
LDAP filters are filter strings that you use to specify a subset of data items in an
LDAP data type.

The underlying LDAP data source processes the LDAP filters. You use LDAP filters
when you do the following tasks:
v Retrieve data items from an LDAP data type using GetByFilter.
v Retrieve a subset of linked LDAP data items using GetByLinks.
v Delete individual data items from an LDAP data type.
v Specify which data items appear when you browse an LDAP data type in the

GUI.

Syntax

An LDAP filter consists of one or more boolean expressions, with logical operators
prefixed to the expression list. The boolean expressions use the following format:
Attribute

Operator
Value

where Attribute is the LDAP attribute name and Value is the field value.

The filter syntax supports the =, ~=, <, <=, >, >=, and ! operators, and provides
limited substring matching using the * operator. In addition, the syntax also
supports calls to matching extensions defined in the LDAP data source. White

Chapter 15. Handling data 115

space is not used as a separator between attribute, operator, and value, and those
string values are not specified using quotation marks.

For more information on LDAP filter syntax, see Internet RFC 2254.

Operators

As with SQL filters, LDAP filters provide a set of comparisons that must be true in
order for a data item to be returned. These comparisons are typically between field
names and their corresponding values. The comparison operators supported in
LDAP filters are:
v =
v ~=,
v <
v <=
v >
v >=
v !

One difference between LDAP filters and SQL filters is that any Boolean operators
used to specify multiple comparisons must be prefixed to the expression. Another
difference is that string literals are not specified using quotation marks.

Examples

Here is an example of an LDAP filter:
(cn=Mahatma Gandhi)
(!(location=NYC*))
(&(facility=Wandsworth)(facility=Putney))
(|(facility=Wall St.)(facility=Midtown)(facility=Jersey City))
(nodeid>=12345)

You can use this example to get all data items where the common name value is
Mahatma Gandhi:
(cn=Mahatma Gandhi)

Using this example you get all data items where the value of the location attribute
does not begin with the string NYC:
(!(location=NYC*))

To get all data items where the value of the facility attribute is Wandsworth or
Putney:
(|(facility=Wandsworth)(facility=Putney))

Mediator filters
You use Mediator filters with the GetByFilter function to retrieve data items from
some Mediator data types.

The syntax for Mediator filters varies depending on the underlying DSA. For more
information about the Mediator syntax for a particular DSA, see the DSA
documentation.

116 Netcool/Impact: Solutions Guide

Retrieving data by filter in a policy
To retrieve data by filter, you call the GetByFilter function and pass the name of
the data type and the filter string.

The function returns an array of data items that match the conditions in the filter.
If you do not specify a return variable, GetByFilter assigns the array to the
built-in variable DataItems.

Example of retrieving data from an SQL database data type
These examples show how to retrieve data from an SQL database data type.

In the first example, you get all the data items from a data type named Node where
the value of the Location field is New York and the value of the TypeID field is
012345.

Then, you print the data item fields and values to the policy log using the Log and
CurrentContext functions.
// Call GetByFilter and pass the name of the data type
// and the filter string.

DataType = "Node";Filter = "Location = ’New York’ AND TypeID = 012345";
CountOnly = False;

MyNodes = GetByFilter(DataType, Filter, CountOnly);

// Log the data item field values.

Log(CurrentContext());

A shorter version of this example is as follows:
MyNodes = GetByFilter("Node", "Location = ’New York’ AND TypeID = 012345", False);
Log(CurrentContext());

In the second example, you get all the data items from a data type named Node
where the value of the IPAddress field equals the value of the Node field in an
incoming event. As above, you print the fields and values in the data items to the
policy log.
// Call GetByFilter and pass the name of the data type
// and the filter string.

DataType = "Node";
Filter = "IPAddress = ’" + @Node + "’";
CountOnly = False;

MyNodes = GetByFilter(DataType, Filter, CountOnly);

// Log the data item field values.

Log(CurrentContext());

Make sure that you understand the filter syntax used in the sample code. When
using the value of a variable inside an SQL filter string, the value must be
encapsulated in single quotation marks. This is because Netcool/Impact processes
the filter string in two stages. During the first stage, it evaluates the variable.
During the second stage, it concatenates the filter string and sends it to the data
source for processing.

A shorter version of this example is as follows:

Chapter 15. Handling data 117

MyNodes = GetByFilter("Node", "Location = ’" + @Node + "’", False);
Log(CurrentContext());

Example of retrieving data from an LDAP data type
These examples show how to retrieve data from an LDAP data type.

In the first example, you get any data items from a data type named User where
the value of the cn (common name) field is Brian Huang. Then, you print the data
item fields and values to the policy log using the Log and CurrentContext
functions.
// Call GetByFilter and pass the name of the data type
// and the filter string.

DataType = "User";
Filter = "(cn=Brian Huang)";
CountOnly = False;

MyUsers = GetByFilter(DataType, Filter, CountOnly);

// Log the data item field values.

Log(CurrentContext());

A shorter version of this example is as follows:
MyUsers = GetByFilter("User", "(cn=Brian Huang)", False);
Log(CurrentContext());

In the second example, you get all data items from a data type named Node where
the value of the Location field is New York or New Jersey. As above, you print the
fields and values in the data items to the policy log.
// Call GetByFilter and pass the name of the data type
// and the filter string.

DataType = "Node";
Filter = "(|(Location=NewYork)(Location=New Jersey))";
CountOnly = False;

MyNodes = GetByFilter(DataType, Filter, CountOnly);

// Log the data item field values

Log(CurrentContext());

A shorter version of this example is as follows:
MyNodes = GetByFilter("Node", "(|(Location=New York)(Location=New Jersey))", False);
Log(CurrentContext());

Example of looking up data from a Smallworld DSA Mediator
data type
The following example shows how to look up data from a Smallworld DSA
Mediator data type.

Smallworld is a network inventory manager developed by GE Network Solutions.
Netcool/Impact provides a Mediator DSA and a set of predefined data types that
allow you to read network data from the Smallworld NIS.

In this example, you get all the data items from the SWNetworkElement data type
where the value of ne_name is DSX1 PNL-01 (ORP). Then, you print the data item
fields and values to the policy log using the Log and CurrentContext functions.

118 Netcool/Impact: Solutions Guide

// Call GetByFilter and pass the name of the data type
// and the filter string.

DataType = "SWNetworkElement";
Filter = "ne_name = ’DSX1 PNL-01 (ORP)’";
CountOnly = False;

MyElements = GetByFilter(DataType, Filter, CountOnly);

// Log the data item field values.

Log(CurrentContext());

A shorter version of this example is as follows:
MyElements = GetByFilter("SWNetworkElement", \
"ne_name = ’NSX1 PNL-01 (ORP)’", False);
Log(CurrentContext());

Retrieving data by key
Retrieving data by key means that you are getting data items from a data type
where you already know the value one or more key fields.

When you retrieve data items by key, you are saying, "Give me a certain number
of data items in this type, where the key fields equal these values." Because key
fields typically designate a unique data item, the number of data items returned is
typically one.

Keys
A key is a special field in a data type that uniquely identifies a data item.

You specify key fields when you create a data type. The most common way to use
the key field is to use it to identify a key field in the underlying data source. For
more information about data type keys, see “Data type keys” on page 27.

Key expressions
The key expression is a value or array of values that key fields in the data item
must equal in order to be returned.

The following key expressions are supported:

Single key expressions
A single key expression is an integer, float, or string that specifies the value
that the key field in a data item must match in order to be retrieved.

Multiple key expressions
A multiple key expression is an array of values that the key fields in a data
item must match in order to be retrieved. For more information, see
“Multiple key expressions.”

Multiple key expressions
A multiple key expression is an array of values that the key fields in a data item
must match in order to be retrieved.

Netcool/Impact determines if the key field values match by comparing each value
in the array with the corresponding key field on a one-by-one basis. For example,
if you have a data type with two key fields named Key_01 and Key_02, and you
use a key expression of {"KEY_12345", "KEY_93832"}, the function compares

Chapter 15. Handling data 119

KEY_12345 with the value of Key_01 and KEY_93832 with the value of Key_02. If both
fields match the specified values, the function returns the data item. If only one
field or no fields match, the data item is not returned.

Retrieving data by key in a policy
To retrieve data by key, you call the GetByKey function and pass the name of the
data type and the filter string.

The function returns an array of data items that match the conditions in the filter.
If you do not specify a return variable, GetByKey assigns the array to the built-in
variable DataItems.

Example of returning data from a data type using a single key
expression
In this example, you retrieve a data item from a data type called Node where the
value of the key field is ID-00001.

Then, you print the data item fields and values to the policy log using the Log and
CurrentContext functions.
// Call GetByKey and pass the name of the data type
// and the key expression.

DataType = "Node";
Key = "ID-00001";
MaxNum = 1;

MyNodes = GetByKey(DataType, Key, MaxNum);

// Log the data item field values.

Log(CurrentContext());

A shorter version of this example is as follows:
MyNodes = GetByKey("Node", "ID-00001", 1);
Log(CurrentContext());

Example of returning data by key using a multiple key
expression
In this example, you retrieve a data item from a data type called Customer where
the values of its key fields are R12345 and D98776.

You print the fields and values in the data items to the policy log.
// Call GetByKey and pass the name of the data type.
// the key expression.

Type = "Customer";
Key = {"R12345", "D98776"};
MaxNum = 1;

MyCustomers = GetByKey(Type, Key, MaxNum);
// Log the data item field values.

Log(CurrentContext());

A shorter version of this example is as follows:
MyCustomers = GetByKey("Customer", {"R12345", "D98776"}, 1);
Log(CurrentContext());

120 Netcool/Impact: Solutions Guide

Retrieving data by link
Retrieving data by link means that you are getting data items from data types that
are linked to one or more data items that you have previously retrieved.

When you retrieve data items by link, you are saying: "Give me data items in these
data types that are linked to these data items that I already have." The data items
that you already have are called the source data items. The data items that you
want to retrieve are known as the targets.

Links overview
Links are an element of the data model that defines relationships between data
items and between data types.

They can save time during the development of policies because they allow you to
define a data relationship once and then reuse it several times when you need to
find data related to other data in a policy. Links are an optional part of a data
model. Dynamic links and static links are supported.

Retrieving data by link in a policy
To retrieve data items by link, you must first retrieve source data items using the
GetByFilter or GetByKey functions.

Then, you call GetByLinks and pass an array of target data types and the sources.
The function returns an array of data items in the target data types that are linked
to the source data items. Optionally, you can specify a filter that defines a subset of
target data items to return. You can also specify the maximum number of returned
data items.

Example of retrieving data by link
These examples show how to retrieve data by link.

In the first example, you call GetByFilter and retrieve a data item from the Node
data type whose Hostname value matches the Node field in an incoming event. Then
you call GetByLinks to retrieve all the data items in the Customers data type that
are linked to the Node. In this example, you print the fields and values in the data
items to the policy log before exiting.
// Call GetByFilter and pass the name of the data type
// and the filter string.

DataType = "Node";
Filter = "Hostname = ’" + @Node + "’";
CountOnly = False;

MyNodes = GetByFilter(DataType, Filter, CountOnly);

// Call GetByLinks and pass the target data type,
// the maximum number of data items to retrieve and
// the source data item.

DataTypes = {"Customer"};
Filter = "";
MaxNum = "10000";
DataItems = MyNodes;

MyCustomers = GetByLinks(DataTypes, Filter, MaxNum, DataItems);

Chapter 15. Handling data 121

// Log the data item field values.

Log(CurrentContext());

A shorter version of this example is:
MyNodes = GetByFilter("Node", "Hostname = ’" + @Node + "’", False");
MyCustomers = GetByLinks({"Customer"}, "", 10000, MyNodes);
Log(CurrentContext());

In the second example, you use a link filter to specify a subset of data items in the
target data type to return. As above, you call GetByFilter and retrieve a data item
from the Node data type whose Hostname value matches the Node field in an
incoming event. Then you call GetByLinks to retrieve all the data items in the
Customers data type whose Location is New York that are linked to the Node. You
then print the fields and values in the data items to the policy log before exiting.
// Call GetByFilter and pass the name of the data type
// and the filter string.

DataType = "Node";
Filter = "Hostname = ’" + @Node + "’";
CountOnly = False;

MyNodes = GetByFilter(DataType, Filter, CountOnly);

// Call GetByLinks and pass the target data type,
// the maximum number of data items to retrieve and
// the source data item.

DataTypes = {"Customer"};
Filter = "Location = ’New York’";
MaxNum = "10000";
DataItems = MyNodes;

MyCustomers = GetByLinks(DataTypes, Filter, MaxNum, DataItems);

// Log the data item field values.

Log(CurrentContext());

A shorter version of this example is:
MyNodes = GetByFilter("Node", "Hostname = ’" + @Node + "’", False");
MyCustomers = GetByLinks({"Customer"}, "Location = ’New York’", 10000, MyNodes);
Log(CurrentContext());

Adding data
Use this procedure to add a data item to a data type.

Procedure
1. Create a context using the NewObject function.

The following example shows how to create a context named MyNode.
MyNode = NewObject();

2. Populate the member variables in the context with data that corresponds to the
values you want to set in the new data item.
The name of each member variable must be exactly as it appears in the data
type definition, as in the following example:

122 Netcool/Impact: Solutions Guide

MyNode.Name = "Achilles";
MyNode.IPAddress = "192.168.1.1";
MyNode.Location = "London";

3. Add the data item.
You can add the data item to the data type by calling the AddDataItem function
and passing the name of the data type and the context as input parameters.
The following example shows how to add the data item to a data type.
AddDataItem("Node", MyNode);

Example of adding a data item to a data type
In this example, the data type is named User.

The User data type contains the following fields: Name, Location, and ID.
// Create new context.

MyUser = NewObject();

// Populate the member variables in the context.

MyUser.ID = "00001";
MyUSer.Name = "Jennifer Mehta";
MyUser.Location = "New York";

// Call AddDataItem and pass the name of the data type
// and the context.

DataType = "User";

AddDataItem(DataType, MyUser);

A shorter version of this example would be as follows:
MyUser=NewObject();
MyUser.ID = "00001";
MyUser.Name = "Jennifer Mehta";
MyUser.Location = "New York";
AddDataItem("User", MyUser);

Updating data
You can update single data items, and multiple data items.

To update single a data item, you must first retrieve the data from the data type
using GetByFilter, GetByKey or GetByLinks. Then you can update the data item
fields by changing the values of the corresponding field variables.

When you change the value of the field variables, the values in the underlying
data source are updated in real time. This means that every time you set a new
field value, Netcool/Impact requests an update at the data source level.

To update multiple data items in a data type, you call the BatchUpdate function
and pass the name of the data type, a filter string that specifies which data items
to update, and an update expression. Netcool/Impact updates all the matching
data items with the specified values.

The update expression uses the same syntax as the SET clause in the UPDATE
statement supported by the underlying data source. This clause consists of a
comma-separated list of the fields and values to be updated.

Chapter 15. Handling data 123

Updating multiple data items is only supported for SQL database data types.

Example of updating single data items
In this example, you call GetByFilter and retrieve a data item from a data type
called Node.

Then you change the value of the corresponding field variables.
// Call GetByFilter and pass the name of the data type
// and the filter string.

DataType = "Node";
Filter = "Location = ’" + @Node + "’";
CountOnly = False;

MyNodes = GetByFilter(DataType, Filter, CountOnly);
MyNode = MyNodes[0];

// Update the values of the field variables in MyNode
// Updates are made in real time in the data source

MyNode.Name = "Host_01";
MyNode.ID = "00001";

// Log the data item field values.

Log(CurrentContext());

A shorter version of this example is as follows:
MyNodes = GetByFilter("Node", "Location = ’" + @Node + "’", False);
MyNodes[0].Name = "Host_01";
MyNodes[0].ID = "00001";
Log(CurrentContext());

Example of updating multiple data items
In this example, you update all the data items in the Customer data type whose
Location is New York.

The update changes the values of the Location and Node fields. Then, you retrieve
the same data items using GetByFilter to verify the update. Before exiting, you
print the data item field values to the policy log.
// Call BatchUpdate and pass the name of the data type,
// the filter string and an update expression

DataType = "Customer";
Filter = "Location = ’New York’";
UpdateExpression = "Location = ’London’, Node = ’Host_02’";

BatchUpdate(DataType, Filter, UpdateExpression);

// Call GetByFilter and pass the name of the data type
// and a filter string

DataType = "Customer";
Filter = "Location = ’London’";
CountOnly = False;

MyCustomers = GetByFilter(DataType, Filter, CountOnly);

// Log the data item field values.

Log(CurrentContext());

124 Netcool/Impact: Solutions Guide

A shorter version of this example is as follows:
BatchUpdate("Customer", "Location = ’New York’", "Location = ’London’,
Node = ’Host_02’");
MyCustomers = GetByFilter("Customer", "Location = ’London’", False);
Log(CurrentContext());

Deleting data
You can delete single data items, or multiple data items.

Before you can delete a single data item from a data type, you must first retrieve it
from the data source. You can retrieve the data item using the GetByFilter,
GetByKey or GetByLinks functions. After you have retrieved the data item, you can
call the DeleteDataItem function and pass the data item as an input parameter.

To delete multiple data items, you call the BatchDelete function and pass it the
name of the data type, and either a filter or the data items you want to delete.
When you delete data items by filter, you are saying: "Delete all data items in this
type, where certain fields contain these values."

The filter is a text string that sets out the conditions that a data item must match in
order for it to be deleted. The syntax for the filter is that of an SQL WHERE clause
that provides a set of comparisons that must be true in order for a data item to be
returned. This syntax specified by the underlying data source. When
Netcool/Impact goes to the data source to delete the data items, it passes this filter
directly to the data source for processing.

Deleting data items by filter is only supported for SQL database data types.

You can also delete data items by passing them directly to the BatchDelete
function as an array.

Example of deleting single data items
In this example, you delete a data item from a data type named User where the
value of the Name field is John Rodriguez.

Because the data type (in this case) only contains one matching data item, you can
reference it as MyUsers[0].
// Call GetByFilter and pass the name of the data type
// and the filter string.

DataType = "User";
Filter = "Name = ’John Rodriguez’";
CountOnly = False;

MyUsers = GetByFilter(DataType, Filter, CountOnly);
MyUser = MyUsers[0];

// Call DeleteDataItem and pass the data item.

DeleteDataItem(MyUser);

A shorter version of this example is as follows:
MyUsers = GetByFilter("User", "Name = ’John Rodriguez’", False);
DeleteDataItem(MyUsers[0]);

Chapter 15. Handling data 125

Example of deleting data items by filter
In this example, you delete all the data items in a data type named Node, where the
value of Location is New York.
// Call BatchDelete and pass the name of the data type
// and a filter string that specifies which data items to delete

DataType = "Node";
Filter = "Location = ’New York’";
DataItems = NULL;

BatchDelete(DataType, Filter, DataItems);

A shorter version of this example is as follows:
BatchDelete("Node", "Location = ’New York’", NULL);

Example of deleting data items by item
The following example shows how to delete multiple data items by passing them
directly to BatchDelete.

In this example, you delete all the data items in a data type named Customer,
where the value of Location is London.
// Call GetByFilter and pass the name of the data type
// and a filter string

DataType = "Customer";
Filter = "Location = ’New York’";
CountOnly = False

MyCustomers = GetByFilter(DataType, Filter, CountOnly);

// Call BatchDelete and pass the array
// returned by GetByFilter

BatchUpdate(DataType, NULL, MyCustomers);

A shorter version of this example is as follows:
MyCustomers = GetByFilter("Customer", "Location = ’London’", False);
BatchDelete("Customers", NULL, MyCustomers);

Calling database functions
You can call functions that are defined in the underlying data source of an SQL
database data type.

These functions allow you to obtain such useful data as the number of rows in the
database that match a specified filter. To call a database function, you call
CallDBFunction and pass the name of the data type, a filter string, and the function
expression. CallDBFunction then returns the results of the function.

CallDBFunction uses the same SQL filter syntax as GetByFilter and BatchDelete.
Complete syntax and additional examples for SQL filters are provided in the Policy
Reference Guide.

The following example shows how to call the database COUNT function within a
policy. In this example, you count the number of data items in the Node data type,
where the value of the Location field is New York. Then, you print the number of
items counted to the policy log.

126 Netcool/Impact: Solutions Guide

// Call CallDBFunction and pass the name of the data type,
// a filter string and the function expression.

DataType = "Node";
Filter = "Location = ’New York’";
Function = "COUNT()";

NumItems = CallDBFunction(DataType, Filter, Function);

// Print the number of counted items to the policy log.

Log(NumItems);

A shorter version of this example is as follows:
NumItems = CallDBFunction("Node", "Location = ’New York’", "COUNT()");
Log(NumItems);

Chapter 15. Handling data 127

128 Netcool/Impact: Solutions Guide

Chapter 16. Handling hibernations

Hibernations are policies that have been temporarily put to sleep. While a policy is
asleep, it is stored internally at its current state and all processing is paused until it
is woken by the hibernating policy activator service or by another policy. IPL and
JavaScript languages support hibernation.

Hibernations overview
The Hibernation data type is a system data type that stores hibernating policies.
You do not typically create or modify Hibernation data items using the Tivoli
Integrated Portal GUI. However, you can use the GUI to delete stored hibernations
in the case that an error condition occurs and the hibernations are not woken by
the hibernation policy activator or another policy.

An action key is a string that uniquely identifies a hibernation. When you
hibernate a policy, you must specify a unique action key.

The hibernation timeout value is the number of seconds that a policy hibernates
before it can be woken by the hibernating policy activator. The hibernation timeout
value does not affect the time at which the hibernation can be woken by another
policy.

Hibernations are designed to be used in X events in Y time solutions. This type of
solution monitors an event source for a certain number of same events to occur
within a time frame, it takes the designated event management action (for
example, notifying an administrator of a repeating event condition).

You can put a policy into hibernation. You can also activate a hibernating policy or
remove a hibernating policy from the hibernation data type. Use the
RemoveHibernation function to remove a policy from the hibernation data type and
to remove it from the hibernation queue.

Hibernating a policy
To hibernate a policy, you call the Hibernate function, and pass an action key and
the number of seconds for it to hibernate.

The action key can be any unique string you want to use to identify the policy.
Typically, you obtain this string by performing any combination of the following
tasks:
v Use the value of the Identifier field in an incoming ObjectServer event. The

ObjectServer generates a unique Identifier value for each event.
v Use the Random function to generate a random value.
v Use the GetDate function to generate a value based on the current system time.

Examples of hibernating a policy
The following examples show how to hibernate a policy and work with IPL and
JavaScript languages.

© Copyright IBM Corp. 2006, 2011 129

In this example, the action key is the value of the Identifier field in an incoming
ObjectServer event. This policy will hibernate for 60 seconds before being woken
by the hibernating policy activator.
// Call Hibernate and pass an action key and the timeout
// value for the hibernation.

ActionKey = EventContainer.Identifier;
Reason = null;
Timeout = 60;

Hibernate(ActionKey, Reason, Timeout);

A shorter version of this policy is as follows.
Hibernate(EventContainer.Identifier, null, 60);

In this example, the action key is a combination of the current system time and a
random value. This policy will hibernate for 2 minutes before being woken by the
hibernating policy activator.
// Call Hibernate and pass an action key and the timeout
// value for the hibernation.

ActionKey = GetDate() + "_" + Random(9999);
Reason = null;
Timeout = 120;

Hibernate(ActionKey, Reason, Timeout);

A shorter version of this policy is as follows.
Hibernate(GetDate() + Random(9999), null, 120);

Retrieving hibernations
Retrieving hibernations is the way that you get data items from the Hibernation
data type. You must retrieve a hibernation before you can wake it from within a
policy or remove it.

You can retrieve hibernations by:
v Action key search
v Filter

Retrieving hibernations by action key search
About this task

You can use the GetHibernatingPolicies function to retrieve hibernations using a
lexicographical search of action key values. GetHibernatingPolicies returns an
array of Hibernation data items whose action keys fall within the specified start
and end action keys.

The following example shows how to retrieve hibernations using an action key
search. This search returns all the Hibernation data items whose action keys fall
between ActionKeyAAA and ActionKeyZZZ. The example also prints the contents of
the policy context to the action tree log.
// Call GetHibernatingPolicies and pass the start action key
// and end action key values.

StartActionKey = "ActionKeyAAA";
EndActionKey = "ActionKeyZZZ";

130 Netcool/Impact: Solutions Guide

MaxNum = 10000;

MyHibers = GetHibernatingPolicies(StartActionKey, EndActionKey, MaxNum);

Log(CurrentContext());

A shorter version of this example is as follows.
MyHibers = GetHibernatingPolicies("ActionKeyAAA", "ActionKeyZZZ", 10000);
Log(CurrentContext());

Retrieving hibernations by filter
About this task

You can use the GetByFilter function to retrieve hibernations using a filter.
GetByFilter returns an array of Hibernation data items whose action keys match
the specified filter string. The filter is an SQL filter as defined in “Retrieving data
by filter” on page 113.

The following example shows how to retrieve hibernations using GetByFilter. In
this example, you retrieve the Hibernation data item whose action key is 76486467.
Then, you print the contents of the current policy context to the policy log.
// Call GetByFilter and pass the name of the data type
// and a filter string.

DataType = "Hibernation";
Filter = "ActionKey = ’76486467’";
CountOnly = false;

MyHibers = GetByFilter(DataType, Filter, CountOnly);

Log(CurrentContext());

A shorter version of this example is as follows.
MyHibers = GetByFilter("Hibernation", "ActionKey = ’76486467’, false);
Log(CurrentContext());

Waking a hibernation
To wake a hibernation, you perform the following tasks:
v Retrieve the hibernation using GetHibernatingPolicies or GetByFilter

v Call ActivateHibernation

You must also run the RemoveHibernation function to remove the policy from the
hibernation queue and to free up memory resources.

Retrieving the hibernation
About this task

The first step in waking a hibernation is to retrieve it from the Hibernation data
type using GetHibernatingPolicies or GetByFilter. This step is described in the
previous section of this guide.

Chapter 16. Handling hibernations 131

Calling ActivateHibernation
About this task

After you have retrieved the hibernation, you can call the ActivateHibernation
function and pass the data item as an input parameter.

Example
The following example shows how to wake a hibernation. In this example, you
wake a hibernation policy whose action key value is ActionKeyABC.
// Call GetHibernatingPolicies and pass the start action key
// and end action key values.

StartActionKey = "ActionKeyAAA";
EndActionKey = "ActionKeyZZZ";
MaxNum = 10000;

MyHibers = GetHibernatingPolicies(StartActionKey, EndActionKey, MaxNum);
MyHiber = MyHibers[0];

// Call ActivateHibernation and pass the Hibernation data item as
// an input parameter.

ActivateHibernation(MyHiber);

Removing hibernations
Use the RemoveHibernation function to remove a policy from the hibernation data
type and to remove it from the hibernation queue. To remove a hibernation from
the internal data repository, you call the RemoveHibernation function and pass the
action key of the hibernation as an input parameter.

The following example shows how to remove a hibernation. In this example, the
action key for the hibernation is ActionKeyABC.
RemoveHibernation("ActionKeyABC");

132 Netcool/Impact: Solutions Guide

Chapter 17. Sending e-mail

Netcool/Impact allows you to send e-mail from within a policy.

Sending e-mail overview
You can use the feature of sending e-mails from within a policy to send e-mail
notification to administrators and users when a certain event or combination of
events occur.

Netcool/Impact does not provide a built-in mail server. Before you can send
e-mail, you must make sure that an SMTP server is available in your environment.
The Netcool/Impact e-mail sender service must also be running before a policy can
successfully send e-mail.

Sending an e-mail
About this task

To send e-mail you call the SendEmail function and pass the following information
as input parameters:

Procedure
v The e-mail address of the recipient
v The subject line text for the e-mail
v The body content of the e-mail
v The name of the e-mail sender

Results

The following example shows how to send an e-mail. In this example, you send
the e-mail to the address srodriguez@example.com.
// Call SendEmail and pass the address, subject and message text
// as input parameters

Address = "srodriguez@example.com";
Subject = "Netcool/Impact Notification";
Message = EventContainer.Node + " has reported the following error condition: "
+ EventContainer.Summary;
Sender = "impact";
ExecuteOnQueue = false;

SendEmail(null, Address, Subject, Message, Sender, ExecuteOnQueue);

© Copyright IBM Corp. 2006, 2011 133

134 Netcool/Impact: Solutions Guide

Chapter 18. Instant messaging

Instant Messaging (IM) is a network service that allows two participants to
communicate through text in real time. The most widely used Instant Messaging
(IM) services are ICQ, AOL Instant Messenger (AIM), Yahoo! Messenger and
Microsoft Messenger. You can send and receive instant messages from within an
Impact policy.

Netcool/Impact IM
Netcool/Impact IM is a feature that allows you to send and receive instant
messages from within a policy. Using this feature, Netcool/Impact can monitor an
IM account on any of the most widely used services for incoming messages and
perform operations when specific messages are received. Netcool/Impact can also
send instant messages to any other IM account. This allows you to use IM to notify
administrators, operators, and other users when certain events occur in your
environment.

Netcool/Impact IM uses Jabber to send and receive instant messages. Jabber is a
set of protocols and technologies that provide the means for two software entities
to exchange streaming data over a network. For more information, see the Jabber
Web site at http://www.jabber.org.

Netcool/Impact IM components
Netcool/Impact has two types of services that work together with your policies to
provide IM functionality. The Jabber reader service listens for incoming instant
messages and then starts a specified policy when a new message is received. The
Jabber service sends messages to other IM accounts.

Netcool/Impact requires access to a Jabber server in order to send and receive
instant messages. A list of public Jabber servers is available from the Jabber Web
site at http://www.jabber.org/user/publicservers.php.

Netcool/Impact IM process
The Netcool/Impact IM process has the following phases:
v Message listening
v Message sending

Message listening
During the message listening phase, the Jabber reader service listens for new
messages from one or more IM accounts. When a new message is received, the
Jabber reader creates a new EventContainer and populates it with the contents of
the incoming message. Then, the Jabber reader starts the policy specified in its
configuration settings and passes it the EventContainer. Netcool/Impact then
processes the policy.

Message sending
Message sending is the phase during which Netcool/Impact sends new messages
through the Jabber service. Message sending occurs during the execution of a

© Copyright IBM Corp. 2006, 2011 135

policy when Netcool/Impact encounters a call to the SendInstantMessage function.
When Netcool/Impact processes a call to SendInstantMessage, it passes the
message content, recipient and other information to the Jabber service. The Jabber
service then assembles the message and sends it to a Jabber server where it is
routed to the specified recipient.

Setting up Netcool/Impact IM
Before you can send and receive instant messages using a policy, you must set up
the Jabber service and the Jabber reader service as described in the User Interface
Guide. After you have set up these services, you can start writing instant
messaging policies using the information in “Writing instant messaging policies.”

Writing instant messaging policies
About this task

You can perform the following tasks with instant messages in a Netcool/Impact
policy:

Procedure
v Handle incoming messages
v Send messages

Results

Handling incoming messages
About this task

When the Jabber reader receives an incoming message, it starts the policy specified
in the Jabber reader service configuration and passes the contents of the message
to the policy using the EventContainer variable. The policy can then handle the
incoming message in the same way it handles information passed in an incoming
event.

When the Jabber reader receives an incoming message, it populates the following
fields in the EventContainer variable: From and Body. The From field contains the
user name of the account from which the message was sent. Body contains the
contents of the message. You can access the contents of these fields using either the
dot notation or the @ notation.

Sending messages
About this task

You send instant messages from within a policy using the SendInstantMessage
function. This function requires you to specify the recipient and the body content
of the message. You can also specify a subject, a chat room ID, and whether to
send the message directly or put it on the message queue for processing by the
command execution manager service. For a complete description of this function,
see the Policy Reference Guide.

136 Netcool/Impact: Solutions Guide

Example
The following example shows how to send and receive instant messages using
Netcool/Impact IM.

In this example, the Jabber reader service calls the policy whenever an incoming
message is received. The policy then confirms receipt of the message and performs
a different set of actions, depending on whether the message sender is
NetcoolAdmin or NetcoolOps.
// Call SendInstantMessage and pass the name of the recipient and the content
// of the message as message parameters
To = @From // Recipient is sender of the original message
TextMessage = "Message receipt confirmed.";
SendInstantMessage(To, NULL, NULL, TextMessage, False);
If (@From == "NetcoolAdmin") {

Log("Message received from user NetcoolAdmin.");
Log("Message contents: " + @Body);

If (@From == "NetcoolOps") {
Log("Message received from user NetcoolOps.");
Log("Message contents: " + @Body);

} Else {
Log("Message received from unrecognized user.");
Log("Message contents: " + @Body);

}

Chapter 18. Instant messaging 137

138 Netcool/Impact: Solutions Guide

Chapter 19. Executing external commands

External command execution is the process of running external commands, scripts,
and applications from within a policy.

External command execution overview
You can execute external commands using the JRExec server or the command and
response feature. The JRExec server is a runnable component of Netcool/Impact
that allows you to run external commands on the system where the
Netcool/Impact server is located. Command and response is a more advanced
feature that lets you run interactive and non-interactive programs on both local
and remote systems.

You can execute any type of external command that can be started from a
command line. Including operating system commands, shell scripts, and many
other types of applications.

JRExec server
You use the JRexec server to run external commands, scripts, and applications from
within a policy.

Overview of the JRExec server
The JRExec server is a runnable server component of Netcool/Impact that you use
to run external commands, scripts, and applications from within a policy, on the
same system where Netcool/Impact is installed.

The JRExec server is automatically installed when you install Netcool/Impact. On
Windows systems, you must also manually add the JRExec server as a Windows
service. You run the JRExec server either using the JRExec server script or through
the services administration tools, depending on the operating system. The server is
configured through a property file.

You use the JRExecAction function to run external commands from within a policy.
For more information about the JRExecAction function, see the Policy Reference
Guide.

Starting the JRExec server
Use this procedure to start the JRExec server.

Procedure
v On UNIX systems you use the JRExec Server startup script, nci_jrexec, located

in the $IMPACT_HOME/bin directory.
Run this command in the terminal:
./nci_jrexec

v On Windows systems you start the JRExec server service, in the Services
management console.
Right-click Netcool JRExec Server in the Services window that opens, and select
Start.

© Copyright IBM Corp. 2006, 2011 139

Stopping the JRExec server
Use this procedure to stop the the JRExec server.

Procedure
v On Windows systems you stop the JRExec server service, in the Services

management console.
Right-click Netcool JRExec Server in the Services window that opens, and select
Stop.

v On UNIX systems you must manually terminate the process.
Two processes are associated with the JRExec Server: the nci_jrexec process, and
a JAVA process that was started by the nci_jrexec process.
1. Obtain their IDs using these commands:

– ps -eaf | grep nci_jrexec

This command returns the PID of the nci_jrexec process.
– ps -eaf | grep java

Apart from the Impact Server, and the GUI Server process ID, this
command should return this process:
501 16053 1 1 13:58 pts/2
00:00:02 /home/netcool_usr/IBM/tivoli/tipv2/java/bin/java
-Dibm.tivoli.impact.propertiesDir=/home/netcool_usr/IBM/tivoli/impact/etc
-Dbase.directory=/home/netcool_usr/IBM/tivoli/impact
-Dnetcool.productname=impact
-classpath /home/netcool_usr/IBM/tivoli/impact/lib/nciJmxClient.jar:
/home/netcool_usr/IBM/tivoli/tipv2/lib/ext/log4j-1.2.15.jar
com.micromuse.response.client.RemoteJRExecServerImpl

This is only an example and the PID, and the path of the process. They
will be different on your system.

2. Kill both processes using this command:
kill -9 pid

where pid is one of the two process IDs associated with the JRExec Server.

The JRExec server configuration properties
The JRExec server properties file, jrexecserver.props, is located in the
$IMPACT_HOME/etc directory.

The file may contain the following properties:

impact.jrexecserver.port

To change the port number used by the JRExec server. Default is 1345. If
you change this property, you must also update the value of the
impact.jrexec.port property in the NCI_server.props file, where NCI is
the name of the Impact Server instance.

impact.jrexecserver.logfile
To enable logging for the JRExec server. Set its value to the path and
filename of the target JRExec server log file. For example,
impact.jrexecserver.logfile=/opt/IBM/tivoli/impact/logs/
jrexecserver.log.

JRExec server logging
To enable logging for the JRExec server, add the impact.jrexecserver.logfile
property to the JRExec Server properties file.
impact.jrexecserver.logfile=filename

140 Netcool/Impact: Solutions Guide

Where filename is the path and filename of the target JRExec server log file.

The JRExec server properties file, jrexecserver.props, that is located in the
$IMPACT_HOME/etc/ directory.

Running commands using the JRExec server
To run a command using the JRExec server, you call the JRExecAction function and
pass the name of the command and any command-line arguments as input
parameters.

You can also pass a value that specifies whether you want the JRExec server to
wait for the command to be completed before executing any other commands, or
to continue processing without waiting.

The following example shows how to run an external command using the JRExec
server. In this example, you send a page to an administrator using a paging
application named pageit that is installed in the /opt/pager/bin directory on the
system. The pageit application takes the phone number of the person paged and
the return contact number as command-line arguments. In this application, the
JRExec server waits for the application to finish before continuing to process any
other commands.
// Call JRExecAction and pass the command string and
// other parameters

Command = "/opt/pager/bin/pageit";
Args = {"2125551212", "2126353131"};
ExecuteOnQueue = False;
Timeout = 60;

JRExecAction(Command, Args, ExecuteOnQueue, Timeout);

Using CommandResponse
Command and response is an advanced feature that lets you run interactive and
non-interactive programs on both local and remote systems.

You can invoke this feature within a policy using the CommandResponse function.
For more information about the syntax of the function, see CommandResponse in the
Policy Reference Guide.

Chapter 19. Executing external commands 141

142 Netcool/Impact: Solutions Guide

Chapter 20. Handling strings and arrays

This chapter contains information about handling strings and arrays in a policy.

Handling strings
The Netcool/Impact policy language allows you to manipulate strings in various
ways. You can perform the following tasks with strings:
v Concatenate strings
v Find the length of a string
v Split a string into substrings
v Extract a substring from another string
v Replace a substring in a string
v Strip a substring from a string
v Trim white space from a string
v Change the case of a string
v Encrypt and decrypt strings

Concatenating strings
About this task

To concatenate strings, you use the addition operator (+). You can concatenate two
strings or multiple strings at once. You can also concatenate a string with a
numeric value.

The following example shows how to concatenate strings.
String1 = "This";
String2 = "is a test";
String3 = String1 + " " + String2;

Log(String3);

String4 = "The value of X is" + 5;

Log(String4);

When you run this example, it prints the following messages to the policy log:
This is a test
The value of X is 5

Finding the length of a string
About this task

You can find the length of a string using the Length function. The Length function
returns the number of characters is any text string.

The following example shows how to use the Length function.
NumChars = Length("This is a test.");
Log(NumChars);

When you run this example, it prints the following message to the policy log:

© Copyright IBM Corp. 2006, 2011 143

15

Splitting a string into substrings
About this task

You can split a string into substrings using the Split function. The Split function
takes a string and a set of delimiter characters as input parameters. It returns an
array in which each element is a substring.

The following example shows how to use the Split function.
MyString = "One, Two, Three, Four.";
Delimiters = ",.";

MyArray = Split(MyString, Delimiters);

Count = Length(MyArray);

While (Count > 0) {
Index = Count - 1;
Log(MyArray[Index]);
Count = Count - 1;
}

When you run this example, it prints the following message to the policy log:
Four
Three
Two
One

Extracting a substring from another string
About this task

You can extract a substring from another string in the following ways:

Procedure
v Using the word position
v Using regular expression matching

Results

Extracting a substring using the word position
To extract a substring using the word position, you call the Extract function, and
pass the string and the word position of the substring.

The following example shows how to extract a string in this way.
MyString = "This is a test.";
MySubstring = Extract(MyString, 2);
Log(MySubstring);

When you run this example, it prints the following message to the policy log:
is

Extracting a substring using regular expression matching
You can use regular expression matching to retrieve a single substring or all
substrings from a string.

144 Netcool/Impact: Solutions Guide

To extract a single substring, you use the RExtract function. The RExtract function
takes a string and a regular expressions pattern as input parameters. It returns the
first matching substring it finds in the string.

To extract all matching substrings, you use the RExtractAll function. As with
RExtract, The RExtractAll function takes a string and a regular expressions
pattern as input parameters. It returns an array that contains all the matching
substrings.

Replacing a substring in a string
About this task

You can replace a substring in a string using the Replace function. The Replace
function takes the string, the substring to replace and its replacement as input
parameters. It returns the string after the replacement has been made.

The following example shows how to replace a substring.
MyString = "This is a test.";
Substring1 = "is a";
Substring2 = "is not a";

MyString = Replace(MyString, Substring1, Substring2);

Log(MyString);

When you run this example, it prints the following message to the policy log:
This is not a test.

Stripping a substring from a string
About this task

You can strip a substring from a string using the Strip function. The Strip
function takes the string and the substring you want to strip as input parameters.
It returns the string after the substring has been removed.

The following example shows how to strip a substring from a string.
MyString = "This is not a test.";
Substring = " not";

MyString = Strip(MyString, Substring);

Log(MyString);

When you run this example, it prints the following message to the policy log:
This is a test.

Trimming white space from a string
About this task

You can trim leading and trailing white space from a string using the Trim
function. The Trim function takes the string as an input parameter and returns it
without any leading or trailing white space.

The following example shows how to trim the white space from a string.

Chapter 20. Handling strings and arrays 145

MyString = " This is a test. ";
MyString = Trim(MyString);
Log(MyString);

When you run this example, it prints the following message to the policy log:
This is a test.

Changing the case of a string
About this task

You can change the case of a string to all lowercase using the ToLower function.

The following example shows how to change a string to lowercase.
Log(ToLower("THIS IS A TEST.");

When you run this example, it prints the following message to the policy log:
this is a test.

You can change the case of a string to all uppercase using the ToUpper function.

The following example shows how to change a string to uppercase.
Log(ToUpper("this is a test.");

When you run this example, it prints the following message to the policy log:
THIS IS A TEST.

Encrypting and decrypting strings
About this task

The policy language provides a feature that allows you to encrypt and decrypt
strings. This feature is useful if you want to handle password data within a
Netcool/Impact policy.

You can encrypt a string using the Encrypt function. This function takes the string
as an input parameter and returns an encrypted version.

The following example shows how to encrypt a string.
MyString = Encrypt("password");

You can decrypt a string that you have previously encrypted using the Decrypt
function. This function takes an encrypted string as an input parameter and
returns the plaintext version.

The following example shows how to decrypt a string.
MyString = Decrypt("AB953E4925B39218F390AD2E9242E81A");

Handling arrays
The Netcool/Impact policy language allows you to perform the following tasks
with arrays:
v Find the length of an array
v Find the distinct values in an array.

146 Netcool/Impact: Solutions Guide

Finding the length of an array
About this task

You can find the number of elements in an array using the Length function. The
Length function takes the array as an input parameter and returns its number of
elements.

The following example shows how to find the number of elements in an array in
IPL.
Elements = Length({"One", "Two", "Three"});
Log(Elements);

The following example shows how to find the number of elements in an array in
JavaScript.
Elements = Length(["One", "Two", "Three"];
Log(Elements);

When you run the example in either language, it prints the following message to
the policy log:
3

Finding the distinct values in an array
About this task

You can find the distinct values in an array using the Distinct function. The
Distinct function takes the array as an input parameter and returns another array
that consists only of the unique, or non-duplicate, elements.

The following example shows how to find the distinct values in an array.
MyArray = {"One", "One", "Two", "Three", "Three", "Four"};
MyArray = Distinct(MyArray};
Log(MyArray);

When you run this example, it prints the following message to the policy log:
{One, Two, Three}

Chapter 20. Handling strings and arrays 147

148 Netcool/Impact: Solutions Guide

Chapter 21. Event enrichment tutorial

The goal of this tutorial is to develop an event enrichment solution to enhance the
value of an existing Netcool/Impact installation.

This solution automates common tasks performed manually by the network
operators and helps to integrate related business data with alerts in the Netcool
OMNIbus ObjectServer.

Tutorial overview
This tutorial uses a sample environment that provides the background for
understanding various event enrichment concepts and tasks.

The environment is a network operations center for a large enterprise where the
company has installed and configured Netcool OMNIbus and is currently using it
to manage devices on its network. The sample environment is a scaled down
representation of what you might actually find in a real world operations center. It
contains only the network elements and business data needed for this tutorial.

This tutorial leads you through the following steps:
v Understanding the Netcool/Impact installation
v Understanding the business data
v Analyzing the workflow in the environment
v Creating a project
v Setting up a data model
v Setting up services
v Writing an event enrichment policy
v Configuring the OMNIbus event reader to run the policy
v Running the complete solution

Understanding the Netcool/Impact installation
The first step in this tutorial is to understand the current Netcool installation.
Generally, before you start developing any Netcool solution, you must find out
which products in the Netcool suite you have installed and which devices,
systems, or applications are being monitored in the environment.

The Netcool installation in the sample environment consists of Netcool OMNIbus
and a collection of probes that monitor devices on the network. This installation
uses two instances of an ObjectServer database named NCOMS that have been set up
in a backup/failover configuration. These ObjectServers are located on host
systems named NCO_HOST_01 and NCO_HOST_02, and run on the default port of 4100.

The probes in this installation monitor various network devices. The details of the
devices are not important in this tutorial, but each probe sends the basic set of
alert fields to the ObjectServer database, including: Node, Summary, Severity,
AlertKey, Identifier, and Count

© Copyright IBM Corp. 2006, 2011 149

Understanding the business data
The next step in this tutorial is to understand the location and structure of the
business data in your environment.

In the sample environment, the company uses instances of the Oracle database to
store network inventory information, customer service information, and general
organizational information about the business.

The information you want to use is stored in two databases named ORA_01 and
ORA_02. ORA_01 is a network inventory database that stores information about the
devices in the network, including their technical specification, facility locations,
and rack numbers. ORA_01 is located on a system named ORA_HOST_01. ORA_02 is a
database that contains information about the various departments in the business.
ORA_02 is located on a system named ORA_HOST_02. They both run on port 1521

Analyzing the workflow
After you have found the location and structure of the business data, the next step
is to analyze the current event management workflow in your environment.

The tutorial work environment is a network operations center. In this center, a
number of operators are on duty at all times. They sit in an open work area and
each one has access to a console that displays a Netcool OMNIbus event list. On
large projector screens on one wall of the operation center are large map
visualizations that provide geographical views into the current network status.

As alerts flow to the ObjectServer from the various Netcool probes and monitors
installed in the environment, they appear in the event lists available to the
operators. Depending on the severity of the alerts, the operators manually perform
a set of tasks using the event list tools, third-party applications, and typical office
tools like cell phones and e-mail.

For the sake of this tutorial, we assume that, among other tasks, the operators are
performing the following actions for each alert whose severity is critical or higher.
The operators:
v Manually acknowledge the alert using the event list.
v Use an in-house database tool to find information about the device causing the

alert. This tool runs a query against the network inventory database and returns
technical specifications, the location, and other information.

v Use another in-house tool to look up the business department being served by
the device that caused the alert.

v If the business department is part of a mission critical business function, they
increase the severity of the alert and update it in the ObjectServer database.

The operators might perform other actions, like looking up the administrators on
call at the facility where the device is located and contacting them by phone or
pager. After the problem that caused the alert has been addressed, the operators
might also record the resolution in a problem log and delete the alert from the
ObjectServer. For this tutorial, however, only use the workflow tasks listed.

150 Netcool/Impact: Solutions Guide

Creating the project
About this task

After you have finished analyzing the workflow, the next step is to create a project
in the Tivoli Integrated Portal GUI. You can use this project to store the data
model, services, and policies used in this solution. The name of this project is
NCI_TUT_01.

To create a project:

Procedure
1. Open the Tivoli Integrated Portal in a web browser and log in.
2. In the navigation tree, expand System Configuration > Event Automation click

on one of the links, for example Data Model, to view the project and cluster
selection lists on the Data Model tab.

3. Select a cluster from the Cluster list. From the Project list, select Global.
4. Click the New Project icon on the toolbar to open the New Project window.
5. Use the New Project window to configure your new project.
6. In the Project Name field, type NCI_TUT_01.
7. Click OK then click Close.

Setting up the data model
After you have created a project for this tutorial, the next step is to set up a
Netcool/Impact data model. This data model consists of the event sources, data
sources, and data types required by the event enrichment solution. It also consists
of a dynamic link used to define the relationship between the data types.

You perform all the tasks in this step using the Tivoli Integrated Portal GUI.

To set up the data model, you perform the following tasks:
v Create the event source
v Create the data sources
v Create the data types
v Create the dynamic link

Creating the event source
About this task

The first task in setting up the data model is to create the event source. As you
learned when you investigated the details of the Netcool installation, the example
environment has one event source, an ObjectServer named NCOMS. Because you
want to tap into the alerts that are stored in this ObjectServer, you must create an
event source that represents it in Netcool/Impact.

An event source is a special type of data source that Netcool/Impact can use to
represent a physical source of event data in the environment. Since your source of
event data is an ObjectServer database, you must create an ObjectServer data
source and configure it with the connection information you discovered when you
investigated the details of the Netcool installation.

To create the event source:

Chapter 21. Event enrichment tutorial 151

Procedure
1. In the navigation tree, expand System Configuration > Event Automation

click Data Model to open the Data Model tab.
2. Select a cluster from the Cluster list. From the Project list, select

NCI_TUT_01.
3. Click the New Data Source icon and select ObjectServer from the list. The

New Data Source opens.
4. Type NCOMS in the Data Source Name field.
5. Type the name and password of an ObjectServer user in the Username and

Password fields.
6. Type NCO_HOST_01 in the Primary Host Name field.
7. Type 4100 in the Primary Port field.
8. Click Test Connection to test the ObjectServer connection.
9. Type NCO_HOST_02 in the Backup Host Name field.

10. Type 4100 in the Backup Port field.
11. Click Test Connection to test the ObjectServer connection.
12. Click OK.

Creating the data sources
About this task

The next task in setting up the data model is to create the data sources. As you
learned when you discovered the location and structure of the business data in
your environment, the data you want to use in this solution is located in two
Oracle databases named ORA_01 and ORA_02. Since you want to access these
databases, you must create a data source that corresponds to each one.

To create the data sources:

Procedure
1. In the navigation tree, expand System Configuration > Event Automation,

click Data Model to open the Data Model tab.
2. Click the New Data Source icon and select Oracle from the list. The New Data

Source window opens.
3. Type ORACLE_01 in the Data Source Name field.
4. Type an Oracle user name and password in the Username and Password fields.
5. Type ORA_HOST_01 in the Primary Host Name field.
6. Type 1521 in the Primary Port field.
7. Type ORA_01 in the SID field.
8. Click Test Connection to test the ObjectServer connection.
9. Click OK.

Results

Repeat these steps to create another data source that corresponds to the ORA_02
database. Name this data source ORACLE_02.

152 Netcool/Impact: Solutions Guide

Creating the data types
About this task

The next task in setting up the data model is to create the data types. As you
learned when you discovered the location and structure of the business data in
your environment, the data that you want to use is contained in two tables.

The first table is called Device and is located in the ORA_01 database. This table
contains information about each device on the network. Columns in this table
include Hostname, DeviceID, HardwareID, Facility, and RackNumber.

The second table is called Department and is located in the ORA_02 database. This
table contains information about each functional department in the business.
Columns in this table include DeptName, DeptID, and Location.

Since you want to access the data in both of these tables, you must create a data
type for each. Name these data types Device and Department.

To create the data types:

Procedure
1. In the navigation tree, expand System Configuration > Event Automation

click Data Model to open the Data Model tab.
2. Select Oracle_01 from the data sources list.
3. Click the New Data Type icon.

A new Data Type Editor tab opens.
4. Type Device in the Data Type Name field.
5. Type ORACLE_01 in the Data Source Name field.
6. Select the Enabled option.
7. Scroll down the Data Type Editor tab so that the Table Description area is

visible.
8. Select Device from the Base Table list.
9. Click Refresh.

Netcool/Impact queries the Oracle database and populates the Table
Description browser with the names of each column in the Device table.

10. Specify that the DeviceID field is the key field for the data type by selecting
the Key option in the DeviceID row.

11. Select Hostname from the Display Name Field list.
12. Click Save in the Data Type Editor tab.
13. Click Close in the Data Type Editor tab.

Results

Repeat these steps to create another data type that corresponds to the Department
table in the ORA_02 database. Name this data type Department.

Creating a dynamic link
About this task

The next step is to create a dynamic link between the Device and Department data
types.

Chapter 21. Event enrichment tutorial 153

One property of the business data that you are using in this solution is that there is
a relationship between devices in the environment and departments in the
business. All the devices that reside in a certain facility serve the business
departments in the same location. You can make this relationship part of the data
model by creating a dynamic link between the Device and Department data types.
Once you have created the dynamic link, you can traverse it within a policy using
the GetByLinks function.

In this relationship, Device is the source data type and Department is the target
data type. When you create the link between the two data types, you can define it
using the following syntax:
Location = ’%Facility%’

This filter tells Netcool/Impact that Device data items are linked to Department
data items if the value of the Location field in the Department is equal to the value
of the Facility field in the Device.

To create the dynamic link:

Procedure
1. In the navigation tree, expand System Configuration > Event Automation,

click Data Model to open the Data Model tab.
2. Click the name of the Device data type.

A new Data Type Editor tab opens in the Main Work panel of the GUI. This
editor displays configuration information for the Device data type.

3. Select the Dynamic Links tab in the editor.
The Links From This Data Type area opens in the editor.

4. Click the New Link By Filter button to open the Link By Filter window.
5. Select Department from the Target Data Type list.
6. In the Filter ... Field, type the filter string that defines the relationship between

the Device and Department list. As noted in the description of this task above,
the filter string is Location = ’%Facility%’. This means that you want Device
data items to be linked to Department data items if the Location field in the
Department is the same as the Facility field in the Device.

7. Click OK.
8. Click the Save button in the Data Type Editor tab.
9. Click the Close button in the Data Type Editor tab.

Reviewing the data model
About this task

After you have created the dynamic links, you can review the data model using
the Tivoli Integrated Portal GUI to verify that you have performed all the tasks
correctly. You can review the data model by opening the Data Source and Data
Type task panes in the Navigation panel, and by making sure that the event
source, data sources, and data types that you created are visible.

Setting up services
The next step in this tutorial is to set up the OMNIbus event reader required by
the solution.

154 Netcool/Impact: Solutions Guide

Creating the event reader
About this task

The OMNIbus event reader for this solution must check the NCOMS ObjectServer
every 3 seconds and retrieve any new events.

To create the event reader:

Procedure
1. In the navigation tree, expand System Configuration > Event Automation,

click Services to open the Services tab.
2. Click the Create New Service icon and select Database EventReader from the

list.
3. Type TUT_READER_01 in the Service Name field.
4. Select NCOMS from the Data Sourcelist.
5. Type 3000 in the Polling Interval field.
6. Select the Startup option. This option specifies whether the service starts

automatically when you run Netcool/Impact.
7. Click OK.

Reviewing the services
About this task

After you have created the event reader, you can use the Tivoli Integrated Portal
GUI to verify that you have performed all the tasks correctly. To review the service
that you created, click the Services task pane in the Navigation panel, and make
sure that the TUT_READER_01 OMNIbus event reader is visible. You can also check
to make sure that the event reader appears in the Service Status panel.

Writing the policy
After you have set up the OMNIbus event reader service, the next step is to write
the policy for the solution. This policy is named EnrichEvent and it automatically
performs the tasks that you discovered when you analyzed the workflow in the
environment.

The EnrichEvent policy performs the following tasks:
v Look up information about the device causing the alert.
v Look up the business departments that are served by the device.
v If one of the business department is part of a mission critical business function,

the policy increases the severity of the alert to critical.

This section assumes that you already know how to create, edit, and save a policy
using the policy editor tools in the Tivoli Integrated Portal GUI. For more
information about these tools, see the User Interface Guide.

Looking up device information
About this task

The first task that you want the policy to perform is to look up device information
related to the alert in the network inventory database. Specifically, you want the

Chapter 21. Event enrichment tutorial 155

policy to retrieve technical specifications for the device causing the alert, as well as
information about the facility and the rack number where the device is located.

To do this, the policy has to perform a SELECT at the database level on the table
that contains the device data and return those rows that are related to the
incoming alert. Viewed from the data model perspective, the policy must get data
items from the Device data type where the value of the Hostname field is the same
as the value of the Node field in the alert.

In order to retrieve the data items, you type the following code into the
Netcool/Impact policy editor tab:
DataType = "Device";
Filter = "Hostname = ’" + @Node + "’";
CountOnly = False;

MyDevices = GetByFilter(DataType, Filter, CountOnly);
MyDevice = MyDevices[0];

If (Length(MyDevices) < 1) { Log("No matching device found."); }
If (Length(MyDevices) > 1) { Log("More than one matching device found."); }

Here, GetByFilter is retrieving data items from the Device data type where the
value of the Hostname field is equal to the value of the Node field in the incoming
alert. The data items are stored in an array named MyDevices.

Although GetByFilter able to return more than one data items in the array, you
only expect the array to contain one data item in this situation, as each device in
the database has a unique Hostname. The first element of the MyDevices array is
assigned to the MyDevice variable so that MyDevice can be used as shorthand later
in the policy.

Because you want to retrieve only one data item from the data type, the policy also
prints error messages to the policy log if GetByFilter retrieves less than or more
than one.

Looking up business departments
About this task

The next task that you want the policy to perform is to look up the business
departments that are served by the device that caused the alert.

When you set up the data model for this solution, you created a dynamic link.
This link defined the relationship between the devices in the environment and
departments in the business. To look up the business departments that are served
by the device, the policy has to take the data item that it previous retrieved from
the Device data type and traverse the links between it and the Department data
type.

In order to retrieve the Department data items that are linked to the Device, type
the following text into the policy editor below the code you entered previously:
DataTypes = {"Department};
Filter = NULL;
MaxNum = 10000;

MyDepts = GetByLinks(DataTypes, Filter, MaxNum, MyDevices);

If (Length(MyDepts) < 1) { Log("No linked departments found."); }

156 Netcool/Impact: Solutions Guide

Here, GetByLinks retrieves up to 10,000 Department data items linked to data items
in the MyDevices array. Since you are certain that the business has less than 10,000
departments, you can use a large value such as this one to make sure that all
Department data items are returned.

The returned data items are stored in the MyDepts array. Because you want at least
one data item from the data type, the policy also prints an error message to the
policy log if GetByLinks does not return any.

Increasing the alert severity
About this task

The final task that you want the policy to perform is to increase the severity of the
alert. For example, if the department that it affects has a mission critical function in
the business. For the purposes of this tutorial, the departments in the business
whose function are mission critical are the Data Center and Transaction Processing
units.

To perform this task, the policy has to iterate through each of the Department data
items retrieved in the previous step. For each Department, it must test the value of
the Name field against the names of the two departments in the business that have
mission critical functions. If the Department name is that of one of the two
departments, the policy must increase the severity of the alert to Critical.
Count = Length(MyDepts);

While (Count > 0) {

Index = Count - 1;
MyDept = MyDepts[Index];

If (MyDept.Name == "Data Center" || MyDept.Name == "Transaction Processing") {
@Severity = 5;

}

Count = Count - 1;

}

Here, you use a While loop to iterate through the elements in the MyDepts array.
MyDepts is the array of Department data items returned previously in the policy by
a call the GetByLinks.

Before the While loop begins, you set the value of the Count variable to the number
of elements in the MyDepts array. Each time the loop runs, it tests the value of
Count. If Count is greater than zero, the statements inside the loop are executed. If
Count is less than or equal to zero, the statements are not executed. Because Count
is decremented by one each time the loop is performed, the While loop runs once
for each data item in MyDepts.

A variable named Index is used to refer the current element in the array. The value
of Index is the value of Count minus one, as Netcool/Impact arrays are zero-based
structures whose first element is counted as zero instead of one.

Inside the loop, the policy uses an If statement to test the name of the current
Department in the array against the name of the two mission-critical business
departments. If the name of the current Department matches the mission-critical

Chapter 21. Event enrichment tutorial 157

departments, the policy sets the value of the Severity field in the alert to 5, which
signifies a critical severity.

Reviewing the policy
About this task

After you have finished writing the policy, you can review it for accuracy and
completeness. The following example shows the entire text of this policy.
// Look up device information

DataType = "Device";
Filter = "Hostname = ’" + @Node + "’";
CountOnly = False;

MyDevices = GetByFilter(DataType, Filter, CountOnly);
MyDevice = MyDevices[0];

If (Length(MyDevices) < 1) { Log("No matching device found."); }

// Look up business departments

DataTypes = {"Department"};
Filter = NULL;
MaxNum = 10000;

MyDepts = GetByLinks(DataTypes, Filter, MaxNum, MyDevices);

If (Length(MyDepts) < 1) { Log("No linked departments found."); }

// If department is mission-critical, update severity of alert

Count = Length(MyDepts);

While (Count > 0) {

Index = Count - 1;
MyDept = MyDepts[Index];

If (MyDept.Name == "Data Center" || MyDept.Name == "Transaction Processing") {
@Severity = 5;

}

Count = Count - 1;

}

Running the solution
The final step in this tutorial is to run the event enrichment solution.

Procedure

To start the solution, you simply start the OMNIbus event reader service.
The event reader then begins to monitor the ObjectServer and retrieves any new
events that appear. When a new event appears, the event reader brings it back into
Netcool/Impact, where it is processed by running the EnrichEvent policy.

158 Netcool/Impact: Solutions Guide

Chapter 22. Configuring the Impact policy PasstoTBSM

In this scenario, you configure the Impact policy PasstoTBSM. You will create and
configure an Impact policy, and create a TBSM service model to receive the data.
You will create a custom portlet to view the data. When you have created the
custom portlet, you will create a freeform page to display the data.

Expected Result

When you have completed this scenario, you will have a freeform custom page
displaying data in TBSM, gathered from an Impact policy.

Overview
Use the PasstoTBSM function to send event information from Netcool/Impact to
TBSM.

Netcool/Impact uses the function PasstoTBSM to send event information to TBSM.
In an Impact policy, you can add the PassToTBSM function to the policy. When you
activate the policy using a Netcool/Impact service, the event information is sent to
TBSM.

In TBSM, you can manually configure an Incoming status rule to look for events
coming from Netcool/Impact. The Data Feed list menu shows the Netcool/Impact
service used to run the policy containing the PasstoTBSM function. To show the
fields available for the selected Netcool/Impact service, you must manually
customize the field names in Customize Fields window to match the fields in the
policy.

You can also use the PasstoTBSM feature to transfer event information from a
remote Netcool/Impact cluster to TBSM. To do this some additional configuration
is required.

Configuration
You can use the PassToTBSM function on both local and remote installations. The
syntax for PassToTBSM is the same as it is for a policy running on a TBSM server.
For a remote installation the following tasks must be completed:
v The TBSM server must share a clustered name server with the remote Impact

Server to view the Netcool/Impact services in the Data Feed list menu in the
Edit Incoming status rule window.

v In TBSM an administration user configures
impact.sla.remoteimpactcluster=<cluster name of remote impact server> in
etc/TBSM_sla.props on the TBSM server.

v In Netcool/Impact, an administrator user exports the project, For
ImpactMigration from TBSM and imports it into the remote version of
Netcool/Impact. Netcool/Impact needs the For ImpactMigration project to
access the TBSM data sources, and data types.

To call the PassToTBSM function from a remote Impact Server, the remote
Netcool/Impactcluster needs the data type ImpactEvents. The ImpactEvents data
type points to the ImpactEvents table in the DB2 database that TBSM uses. This

© Copyright IBM Corp. 2006, 2011 159

data type uses a data source called TBSMDatabase. The TBSMDatabase data
source and the ImpactEvents data type belong to the project called
ForImpactMigration in the TBSM server.

You can export this project from the TBSM server and import it into the remote
Impact Server to provide the Impact Server with the data sources and data types
required from TBSM.

Exporting and Importing the ForImpactMigration project
To call the PassToTBSM function from a remote Impact server, the remote Impact
server needs to import the ForImpactMigration project and its contents from
TBSM.

Before you begin

The ForImpactMigration project displays in the Projects list in the version of
Impact that is contained within TBSM. The ForImpactMigration project has the
data sources and data types necessary for remote Impact server to send events
using PassToTBSM. To send events to TBSM from a remote Impact server, an
administrator user needs to export the ForImpactMigration project from the TBSM
server and import it into their Impact server.

About this task

Before you complete the export and import to the Impact server. Use the Unlock
all button on the Global projects toolbar to unlock any locked items and check the
etc/<instance_name>_versioncontrol.locks file for locked items before completing
the export and import steps.

Procedure
1. In the TBSM server instance, run the nci export command.

<INSTALL_DIR>/tbsm/bin/nci_export TBSM --project ForMigration <exported
dir>

2. Copy the exported directory to the remote Impact server or to a location where
the Impact server can access the directory.

3. In the Impact server instance, run the nci import command.
<INSTALL_DIR>/impact/bin/nci_import NCI <exported dir> to import the
ForImpactMigration into the remote Impact server.

Creating a policy
A policy example to use for PassToTBSM using the Web Services wizard to create
the policy

About this task

The role of this policy is to monitor a web service that provides weather data on
temperature and humidity about a particular city. In this example, create the policy
using the Web service option in the policy Wizard.

Procedure
1. In the Policies tab, select the arrow next to the New Policy icon. Select Use

Wizard > Web Services to open the Web Service Invoke-Introduction window.

160 Netcool/Impact: Solutions Guide

2. In the Web Service Invoke-Introduction window, type in the policy name in
the Policy Name field, for example Weather and click Next to continue.

3. In the Web Service Invoke-WSDL file and client stub window, in the URL or
Path to WSDL field, enter the URL or a path for the target WSDL file. For
example http://wsf.cdyne.com/WeatherWS/Weather.asmx?wsdl.
In instances where the GUI server is installed separately from the Impact
Server, the file path for the WSDL file refers to the Impact Server file system,
not the GUI server file system. If you enter a URL for the WSDL file, that URL
must be accessible to the Impact Server host and the GUI server host.

4. In the Client Stub area, select Provide a package name for the new client
stub.

5. Enter a name for the package, for example getWeatherInfoPkg. Click Next.
6. In the Web Service Invoke-Web Service Name, Port and Method window, the

general web service information is prepopulated for the following items; Web
Service Weather, Web Service Port Type WeatherSoap, and Web Service
Method. Select the option you want from the list, for example,
GetCityWeatherByZIP. Click Next.

7. In the Web Service Invocation- Web Service Method parameters window, enter
the parameters required by the target Web service method. For example, enter
the name the zip code of the city you want to get weather information for.
Click Next. When the wizard is complete it creates a policy which gets
weather information from the selected web site for the specified city.

8. In the Web Service Invoke-Web Service EndPoint window, you can optionally
edit the URL or Path to WSDL by selecting the edit check box. To enable web
service security, select the Enable web service security service check box.
Select one of the following authentication types:
v HTTP user name authentication

v SOAP message user name authentication

Add the User name and Password. Click Next.

9. The Web Service Invoke-Summary and Finish window is displayed. It shows
details relating to the policy. Click Finish to create the policy. When the
wizard is completed, it generates the policy content. You can run the policy in
the usual way and verify the results in the policy logger.

10. To extract the data from the policy and send it to TBSM. You must manually
edit the policy and add the following lines to the policy. PassToTBSM(ec);

Important: This policy uses a NewEvent object to pass the data. If you create
an object to send the event data to PassToTBSM, use NewEvent, not NewObject.
If your policy is driven by an event reader or listener, the EventContainer
object can be sent directly into PassToTBSM. A PolicyActivator service does
not pass any event object to its policy, so you must create a
NewEvent("EventSourceName") including the name of the service which points
to the event source from where events are read and sent. For example,
MyEvent = NewEvent("DefaultPolicyActivator");

An example of the web service policy generated by the web services wizard.
//This policy generated by Impact Wizard.

//This policy is based on wsdl file at
http://wsf.cdyne.com/WeatherWS/Weather.asmx?wsdl

log("Start policy ’getWeather’...");
//Specify package name as defined when compiling WSDL in Impact
WSSetDefaultPKGName(’getWeatherInfoPkg’);

Chapter 22. Configuring the Impact policy PasstoTBSM 161

//Specify parameters
GetCityWeatherByZIPDocument=WSNewObject
("com.cdyne.ws.weatherws.GetCityWeatherByZIPDocument");
_GetCityWeatherByZIP=WSNewSubObject
(GetCityWeatherByZIPDocument,"GetCityWeatherByZIP");

_ZIP = ’27513’;
_GetCityWeatherByZIP[’ZIP’] = _ZIP;

WSParams = {GetCityWeatherByZIPDocument};

//Specify web service name, end point and method
WSService = ’Weather’;
WSEndPoint = ’http://wsf.cdyne.com/WeatherWS/Weather.asmx’;
WSMethod = ’getCityWeatherByZIP’;

log("About to invoke Web Service call GetCityWeatherByZIP");

WSInvokeDLResult = WSInvokeDL(WSService, WSEndPoint, WSMethod, WSParams);
log("Web Service call GetCityWeatherByZIP return result:
" +WSInvokeDLResult);

//Added for PasstoTBSM

city = WSInvokeDLResult.GetCityWeatherByZIPResponse.
GetCityWeatherByZIPResult.City;
temperature=WSInvokeDLResult.GetCityWeatherByZIPResponse.
GetCityWeatherByZIPResult.Temperature;
humidity=WSInvokeDLResult.GetCityWeatherByZIPResponse.
GetCityWeatherByZIPResult.RelativeHumidity;

ec = NewEvent("WeatherActivator");
// Using a Policy Activator called WeatherActivator

ec.city=city;
ec.temperature=temperature;
ec.humidity=humidity;

log(" City : " + ec.city + " Temp : " + ec.temperature + " Humid :
" + ec.humidity);

PassToTBSM(ec);

Creating a policy activator service
Create the policy activator service to call the policy to get updates and to pass the
updates to TBSM.

Procedure
1. In the navigation tree, expand System Configuration > Event Automation click

Services to open the Services tab.
2. In the Services tab, click the Create New Service icon.
3. From the menu, select a template for the service that you want to create. In this

instance, select Policy Activator.
4. Add the Service Name for example WeatherActivator, the Activation Interval

in seconds, for example 300 and select the policy Weather you created earlier
policy from the Policy list menu.

5. Startup: Automatically when server starts Select the checkbox to automatically
start the service when the server starts. You can also start and stop the service
from the GUI.

6. Service log: Write to file Select the checkbox to write log information to a file.

162 Netcool/Impact: Solutions Guide

7. Click the Save Service icon.
8. Start the service.

Create a new template and rule to collect weather data
In this topic, you create a service structure to organize the weather data by city.
You create a regional service template and an aggregation rule that depends on the
City service template.

About this task

To create the service structure:

Procedure
1. From the Service Navigation pull-down menu, select Templates.
2. Click Create New Template button. The Edit Template tab opens in the

Service Editor.
3. Enter CityWeather in the Template Name field.
4. Enter Weather data by city in the Description field.
5. In the Rules tab after Children, click Create Incoming Status rule button.
6. Select the Based on a Numeric Value radio button and click the OK button.

The Edit Incoming status rule window opens.
7. Type CityTemperature in the Rule Name field.
8. Select WeatherActivator from the Data Feed drop-down list.
9. Click the Customize Fields button. The Customized Fields window opens.

10. Make sure the values for the fields based on the match table below:

Table 18. Default Field Names and Types

Field Name Field Type

EventClass String

EventType String

ResourceName String

SecondaryResourceName String

Summary String

Value1 Float

Value2 Float

Value3 Float

11. Add the following fields:

Table 19. New Custom Fields and Types

Field Name Field Type

city String

temperature Float

humidity Float

12. Click OK.
13. Enter the remaining values for the incoming status rule using the table below

as your guide.

Chapter 22. Configuring the Impact policy PasstoTBSM 163

Table 20. Settings for CityTemperature rule

Entry fields Value

Instance Name city

Expression temperature <

Select the Status checkbox.

Marginal

Bad

80

95

Select the Store data for this rule for TWA checkbox.

14. Click OK. The CityTemperature rule is listed in the Rules tab.
15. You can repeat the same steps to create a CityHumidity incoming status rule

to collect humidity data from WeatherActivator data feed. Select humidity as
the output value and choose values between 0 and 100 for status thresholds.

16. To save the rule, click the Save button in the Edit Template tool bar.

Create the CityHumidity rule for the CityWeather template
In this topic you will create a rule to collect data for the template.

Procedure
1. From the Service Navigation pull-down menu, select Templates.
2. If it is not already open, click the Edit Template 'CityWeather' tab.
3. Click the Incoming Status Rule button to open the Edit Incoming Status Rule

Type window.

4. Select the Based on a Good, Marginal, and Bad Threshold radio button and
click the OK button.
The Create Incoming Status Rule window opens.

5. Type CityHumidity in the Rule Name field.
6. Select weatherActivator from the Data Feed drop-down list.
7. Click the Customize Fields button. The Customized Fields window opens.
8. Make sure the values for the fields based on the match table below:

Table 21. Default Field Names and Types

Field Name Field Type

EventClass String

EventType String

ResourceName String

SecondaryResourceName String

Summary String

Value1 Float

Value2 Float

Value3 Float

Figure 5. Incoming status rule button

164 Netcool/Impact: Solutions Guide

9. Add the following fields:

Table 22. New Custom Fields and Types

Field Name Field Type

City String

Temperature Float

Humidity Float

10. Click OK.
11. Enter the remaining values for the incoming status rule using the table below

as your guide.

Table 23. Settings for CityTemperature rule

Entry fields Value

Instance Name City

Expression Humidity <

Select the Status checkbox.

Marginal

Bad

60

85

Select the Store data for this rule for TWA checkbox.

12. Click the OK button.
13. Click the Save button in Edit Template 'CityWeather' tab.

Note: The rule will not be saved to the TBSM database until you click the
Save button.
The CityHumidity rule displays in the Rules tab.

What to do next

Next: Create the service by hand.

In this topic, you create a service for city weather.

Create a city service
In this topic, you will create a service.

About this task

To create a service called Cary, complete the following steps:

Procedure
1. From the Service Navigation pull down menu, select Services.
2. Click the Create New Service button.

The Edit Service tab opens in the Service Editor.
3. In the Service Name field type Cary.
4. In the Templates tab, click the template CityWeather in the Available

Templates list and click the >> button.

Chapter 22. Configuring the Impact policy PasstoTBSM 165

The CityWeather template moves to the Selected Templates list.
5. Click the Save button in the Edit Service tab toolbar.
6. The Service Navigation portlet displays the new service in the Services tree.
7. In order to have a custom service tree with just the cities containing weather

information, create another service (let's say, Weather) and make Cary a
dependent of it.

8. Create a new tree template CityWeather, adding the Temperature and
Humidity columns for the CityWeather template. Associate the new columns to
@CityTemperature and @CityHumidity, respectively.
For information on creating custom trees, see the Service Configuration Guide >
Custom service trees.

Results

Next: Customize a Service Tree portlet

When you have created the service, you can customize a Service Tree portlet to
only show the City weather information.

Customizing a Service Tree portlet
In this topic, you will be creating a customized Service Tree portlet.

Procedure
1. Click Settings –> Portlets in the navigation pane. A list of all navigation

nodes in the console are displayed, grouped the same way as they are in the
console navigation. The page includes all the portlets you can choose to
customize.

2. Click New. The welcome page of the Create Widget wizard opens. Click Next.
The next page is launched with the title Select a Base Widget.

3. Select the Services portlet. Click Next.
4. On the General page, enter Weather by City in the Name field.
5. Scroll through the thumbnail icon choices for the portlet, and choose

according to the figure below.
6. Choose the Description Image for the new portlet as shown in the figure

below:

7. Select TBSM and click the Add > button to add the new portlet to the TBSM
catalog.

8. Click Next. The Security page is launched.
9. On the Security page, select User from the Selected Roles list.

10. Click Add to view a list of roles that can access this page.
11. Select these roles from the list of Available Roles:

v tbsmReadOnlyUser

166 Netcool/Impact: Solutions Guide

v tbsmAdminUser

v

12. Select User from the Selected Roles drop down list for user access levels. Click
Add.

13. From the list of Available Roles, select tbsmAdminUser, select Privileged User
from the Selected Roles drop down list for user access levels.

14. Click Add.
15. Click Next The Customize section opens.
16. On the General page, enter Weather by City for the portlet title.
17. Click Next. The Context page opens. Select Weather as starting instance.
18. Click Next. The View page opens.
19. In the Tree Template drop-down list, select CityWeather. Keep the defaults for

the other fields.
20. Click Next. The Summary page displays.
21. Click Finish.
22. Verify in Settings –> Portlets that the new portlet is listed.

Results

Next: Adding a custom Services portlet to a freeform page

When you have customized a Service Tree portlet, you can add to a new page.

Adding a custom Services portlet to a freeform page
In this topic, you can add a custom Service Tree to a new freeform page.

Before you begin

To create a custom page, you need administrator privileges in TBSM.

About this task

To create a custom page, complete the following steps:

Procedure
1. Click Settings –> Pages in the navigation pane. A list of all navigation nodes

in the console are displayed, grouped the same way as they are in the console
navigation.

2. Click New Page. A new page is launched with the title Page Settings.
3. Enter Weather Service in the Page name field.
4. In the Page location field, click Location to browse for the location you want

your page. console/Availability/. This value page specifies that the page
will be listed under Availability in the console task list. Keep the defaults for
the other fields.

5. In the Page location field, click Location to browse for where the new page
will be listed in the console task list. Drag the new page into the Availability
folder. This page is for read-only users who will not need to edit services. As
a result, you add the page to the Availability group. The Location field is
updated with console/Availability/. Keep the defaults for the other fields.

6. Click OK.

Chapter 22. Configuring the Impact policy PasstoTBSM 167

7. Select Freeform option under Page Layout.
8. Expand Optional setting to add roles access to this page.
9. Select User from the Selected Roles list.

10. Click Add to view a list of roles that can access this page.
11. Select these roles from the list of Available Roles:

v tbsmReadOnlyUser

v tbsmAdminUser

v

12. Click Add .
13. For tbsmReadOnlyUser, select User from the Access Level drop-down list.
14. For tbsmAdminUser, select Privileged User from the Selected Roles list.
15. Click OK. The Portlet palette displays, which is used to select portlet content.
16. Select the All folder.
17. Use the arrows at the bottom of the Portlet palette to find and select the

Weather by City portlet.
18. Drag the City Weather Tree portlet into the empty space below the Portlet

palette. --> Weather by City

19. Drag a Time Window Analyzer and place it under the Weather by City.
20. In the Time Window Analyzer, click Add Service.
21. Search for Cary, and click on it. You can edit Shared Preferences to make Cary

the default service for the Time Window Analyzer portlet.
22. Click Edit Options > Skin to customize the look of your portlet. The Skin

option controls how the border of the portlet looks.
23. Click Done. The new page will open.

Note: After you click Done, you will not be able to change or arrange your
portlets.

24. Log out and log in as the OSManager1 user to verify that the new user can see
the page.

168 Netcool/Impact: Solutions Guide

Chapter 23. Maintenance Window Management

Maintenance Window Management (MWM) is an add-on for managing Netcool
OMNIbus maintenance windows.

MWM can be used with OMNIbus versions 7.1, 7.2, and 7.3. A maintenance time
window is a prescheduled period of downtime for a particular asset. Faults and
alarms, also known as events, are often generated by assets undergoing
maintenance, but these events can be ignored by operations. MWM creates
maintenance time windows and ties them to Netcool OMNIbus events that are
based on OMNIbus fields values such as Node or Location.Netcool/Impact
watches the Netcool OMNIbus event stream and puts these events into
maintenance according to the maintenance time windows. The Netcool/Impact
MWMActivator service located in the System Configuration > Event Automation
> Services in the MWM project must be running to use this feature. For more
information about maintenance windows, see “About MWM maintenance
windows” on page 171.

Activating MWM in a Netcool/Impact cluster
Maintenance Window Management (MWM) interacts with Netcool OMNIbus using
an Netcool/Impact policy activator service called MWMActivator. This service is
turned off by default in Netcool/Impact.

About this task

Use the following steps to activate MWM in the Netcool/Impact cluster
NCICLUSTER.

Procedure
1. Log on to Netcool/Impact.
2. Expand System Configuration > Event Automation. Click Policies.
3. From the Cluster list, select NCICLUSTER. From the Project list, select MWM.
4. In the Policies tab, select the MWM_Properties policy, right click, and select

Edit or click the Edit policy icon to view the policy and make any required
changes. For more information, see “Configure the MWM_Properties policy.”

5. Click Services.
6. In the Services tab, select MWMActivator, right click, and select Edit or click

the Edit services icon to open the MWMActivator service properties. Make any
required changes. For information about these properties, see “Configuring
MWMActivator service properties” on page 170.

7. To start the service, in the service status pane, select MWMActivator and either
right click and select Start or click the Start Service arrow in the Services
toolbar.
When the service is running it puts OMNIbus events into maintenance based
on schedules entered into the MWM GUI.

Configure the MWM_Properties policy
Configure the MWM_Properties policy for use with the MWM add-on.

© Copyright IBM Corp. 2006, 2011 169

The following configurable options are available in the Maintenance Window
Management MWM_Properties policy.
v Maintenance window expiration

– By default, MWM clears the “in maintenance” flag from corresponding
OMNIbus events when a window expires. You can edit the policy so that
MWM leaves those events flagged as “in maintenance” after the maintenance
window expires.

v Flagging existing events when a maintenance window starts
– By default, any matching events in OMNIbus are flagged, regardless of when

they came into OMNIbus. You can modify the policy so that MWM flags only
events arrive or deduplicate while the maintenance window is running.

You can change these options by editing the MWM_Properties policy in the MWM
project.
1. Expand System Configuration > Event Automation, click Services.
2. In the Projects list, select MWM.
3. In the Policies tab, select MWM_Properties, right click and select Edit to open

the policy. MWM_Properties is a small policy with a single function called
getProperties(). Other MWM policies call this function to retrieve
configuration information.

4. To change the MWM options, change the function and the given values to TRUE
or FALSE if required.

See the following information in the policy for clearFlag options. clearFlag =
TRUE is the default option.
Use clearFlag = TRUE if you want the maintenance flag
on events cleared when windows expire.
Use clearFlag = FALSE if you want Impact to leave the events tagged
as in maintenance after the window expires.

See the following information in the policy for flagExistingEvents options.
flagExistingEvents = TRUE is the default option.
Use flagExistingEvents = TRUE if you want Impact to flag as "in maintenance"
events which last came in (based on LastOccurrence) before the time window started.
Use flagExistingEvents = FALSE if you want Impact to NOT flag events as
"in maintenance" unless they come in during the maintenance window.

function getProperties(propsContext)
{
propsContext = newobject();

//SET YOUR VALUES HERE////////////////////////
clearFlag = TRUE;
flagExistingEvents = TRUE;
//THANKS :)

propsContext.clearFlag = clearFlag;
propsContext.flagExistingEvents = flagExistingEvents;

}

Configuring MWMActivator service properties
Configure the MWMActivator service to check for OMNIbus events that require
maintenance.

170 Netcool/Impact: Solutions Guide

Procedure
1. Expand System Configuration > Event Automation, click Services.
2. In the Services tab, right click MWMActivator and select Edit or click the Edit

services icon to open the properties for the MWMActivator service.
3. By default, the MWMActivator Activation Interval is set to 7 seconds. The

MWMActivator service checks OMNIbus every seven seconds for events that
require maintenance. Select the interval time you want to use. If possible use
prime numbers.

4. Change the Policy value only if you have created your own policy to replace
the MWM_Properties policy.

5. Select Startup to start the MWMActivator service when Netcool/Impact starts.
6. Select the Service Log to create a file of the service log.

Logging on to Maintenance Window Management
Use theTivoli Integrated Portal to access Maintenance Window Management
(MWM).

Procedure
1. In the Tivoli Integrated Portal, expand Troubleshooting and Support > Event

Automation.
2. Click Maintenance Window Management to open MWM. The main menu

options are Add One Time, Add Recurring, and View Windows. There is also
a Time Zone menu for setting your time zone. For more information about
using these options, see “About MWM maintenance windows.”

About MWM maintenance windows
Use the Maintenance Window Management (MWM) web interface to create
maintenance time windows and associate them withNetcool OMNIbus events.

Netcool OMNIbus events are based on OMNIbus field values such as Node or
Location. The Netcool OMNIbusevents are then put into maintenance according to
these maintenance time windows. If events occur during a maintenance window,
MWM flags them as being in maintenance by changing the value of the OMNIbus
field, integer field, SuppressEscl to 6 in the alerts.status table.

A maintenance time window is prescheduled downtime for a particular asset.
Faults and alarms (events) are often generated by assets that are undergoing
maintenance, but these events can be ignored by operations. MWM tags OMNIbus
events in maintenance so that operations know not to focus on them. You can use
MWM to enter one time and recurring maintenance time windows.
v One time windows are maintenance time windows that run once and do not

recur. One Time Windows can be used for emergency maintenance situations
that fall outside regularly scheduled maintenance periods. You can use them all
the time if you do not have a regular maintenance schedule.

v Recurring time windows are maintenance time windows that occur at regular
intervals. MWM supports three types of recurring time windows:
– Recurring Day of Week

– Recurring Date of Month

– Every nth Weekday

Maintenance time windows must be linked to OMNIbus events in order for MWM
to mark events as being in maintenance. When you configure a time window, you

Chapter 23. Maintenance Window Management 171

also define which events are to be associated with the time window. The MWM
supports the use of Node, AlertGroup, AlertKey, and Location fields for linking
events to time windows.

Creating a one time maintenance window
Create a one time maintenance time window for a particular asset.

Procedure
1. Click the Add One Time link to view the form to create a one time

maintenance window.
2. Enter the appropriate values in the fields Node, AlertGroup, AlertKey, and

Location.
Select the Equals or Like options next to each field.

3. Click the calendar icon to select theStart Time and End Time for the
maintenance time window.

4. Click Add Window to create the window.
5. Click View Windows to see the configured window.

Creating a recurring maintenance window
Create a recurring maintenance time window for a particular asset.

Procedure
1. Click the Add Recurring link to view the form for creating the different types

of recurring time windows.
2. Enter the appropriate values in the fields Node, AlertGroup, AlertKey, and

Location.
Select the Equals or Like options next to each field.

3. Select the Start Time and End Time for the maintenance time window.
4. Select the type of recurring window and complete the details.

v Recurring Day of Week These windows occur every week on the same day
and at the same time of day. For example, you can set the window to every
Saturday from 5 p.m. to 12 a.m. Or you can set the window for multiple
days such as Saturday, Sunday, and Monday from 5 p.m. to 12 a.m.

v Recurring Day of Month These windows occur every month on the same
date at the same time of day. For example, you can set the window to every
month on the 15th from 7 a.m. to 8 a.m. Or you can set the window for
multiple months.

v Every nth Weekday These windows occur every month on the same day of
the week at the same time. For example, you can set the window to the first
and third Saturday of the month from 5 p.m. to 12 a.m.

5. Click Add Window to create the window.
6. Click View Windows to verify that your time window has been added.

Viewing maintenance windows
Click the View Windows link to view a toolbar which contains links to the
different types of windows. Your viewing options are:
v One Time

v Day of Week

v Day of Month

v nth Weekday

v Active Windows

172 Netcool/Impact: Solutions Guide

If maintenance windows are defined in any of these window categories, click a
link to view a list of defined maintenance windows.

The color of the status icon indicates whether the window is active (green), expired
(red), or has not started yet (blue, future).

You can use the delete icon to delete a maintenance window.

Maintenance Window Management and other Netcool/Impact
policies
Maintenance Window Management (MWM) runs independently from other
Netcool/Impact policies or OMNIbus automations. Every seven seconds, MWM
checks for open maintenance windows and marks the appropriate events as being
in maintenance. Take this feature into consideration when you add your own
policies and automations.

Known shortcomings

The MWM GUI interacts with the primary Impact server in the Impact cluster.
Data is stored in the HSQL database of the primary Impact server. Data is not
replicated between HSQL instances in the Impact cluster. If your primary Impact
server changes, the MWM GUI and policies cannot interact with previously
entered data.

If there are overlapping time windows, there is a chance that an event could be
temporarily flagged as out of maintenance when the first window ends. If this
situation occurs, the event is flagged as in maintenance the next time the
MWMActivator Service runs. The clearFlag property comes to play here. If the
clearFlag = FALSE, then the event is never marked as out of maintenance.

Maintenance Window Management does not work properly if the default cluster
name, NCICLUSTER, is not used. When the MWM main page opens, you see the
following message:
Could not retrieve a client for accessing the Impact server, under cluster:
clustername

For information about how to resolve this issue, see the Troubleshooting Guide.

Chapter 23. Maintenance Window Management 173

174 Netcool/Impact: Solutions Guide

Chapter 24. Event Isolation and Correlation

Event Isolation and Correlation is provided as an additional component of the
Netcool/Impact product. Event Isolation and Correlation is developed using the
operator view technology in Netcool/Impact. You can set up Event Isolation and
Correlation to isolate an event that has caused a problem. You can also view the
events dependent on the isolated event.

Overview
Netcool/Impact has a predefined project, EventIsolationAndCorrelation that
contains predefined data sources, data types, policies, and operator views. When
all the required databases and schemas are installed and configured you must set
up the data sources. Then, you can create the event rules using the objectserver sql
in the Event Isolation and Correlation configuration view from the Tivoli
Integrated Portal. You can view the event analysis in the operator view,
EIC_Analyze.

To set up and run the Event Isolation and Correlation feature the following steps
need to be completed.
1. Install Netcool/Impact.
2. Install DB2 or use an existing DB2 installation.
3. Configure the DB2 database with the DB2 Schema in the Netcool/Impact

launchpad.
4. Install Discovery Library toolkit from the Netcool/Impact launchpad.

If you already have a Tivoli® Application Dependency Discovery Manager
(TADDM) installation, configure the discovery library toolkit to consume the
relationship data from TADDM. You can also consume the data is through the
loading of Identity Markup Language (IDML) books. For additional
information about the discovery library toolkit, see the Tivoli Business Service
Manager Administrator's Guide and the Tivoli Business Service Manager
Customization Guide. These guides are available in the Tivoli Business Service
Manager 6.1.0.1 information center available from the following url,
https://www.ibm.com/developerworks/wikis/display/tivolidoccentral/
Tivoli+Business+Service+Manager.

5. In the Tivoli Integrated Portal, configure the data sources and data types in the
EventIsolationAndCorrelation project to use with the Impact Server.

6. Create the event rules in the UI to connect to the Impact Server.
7. Configure WebGUI to add a new launch point.

Detailed information about setting up and configuring Event Isolation and
Correlation, is in the Netcool/Impact Solutions Guide.

Installing Netcool/Impact and the DB2 database
To run the Event Isolation and Correlation feature, install Netcool/Impact and the
DB2 database and configure the DB2 Schema.

© Copyright IBM Corp. 2006, 2011 175

https://www.ibm.com/developerworks/wikis/display/tivolidoccentral/Tivoli+Business+Service+Manager
https://www.ibm.com/developerworks/wikis/display/tivolidoccentral/Tivoli+Business+Service+Manager

Procedure
1. Install Netcool/Impact. Refer to Netcool/Impact Administration Guide, Chapter 2

Installation and migration.
2. Install DB2. Netcool/Impact and Tivoli Business Service Manager support DB2

version 9.5 or higher. For information about installing and using DB2, see the
information center listed here for the version you are using:
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/
com.ibm.db2.luw.common.doc/doc/t0021844.html.
v In a z/Linux environment, you have to manually install the DB2 schema

from the command line and not from the launchpad. Run the following
command from the command line:
launchpad/zlinux/setup-dbconfig-zlinux.bin.

3. Configure the DB2 database with the DB2 schema. A user who has permissions
to run the DB2 command-line tools completes this step.
v For Unix, use the user ID db2inst1.
v For Windows, use the user ID db2admin.

You can install the DB2 schema from the Netcool/Impact launchpad.

Installing the Discovery Library Toolkit
Install the discovery library toolkit, to import the discovered resources and
relationships into the Services Component Registry database.

About this task

For information about the Services Component Registry see the Services Component
Registry API information in the Tivoli Business Service Manager Customization Guide
available from the following url, https://www.ibm.com/developerworks/wikis/
display/tivolidoccentral/Tivoli+Business+Service+Manager.

Use the discovery library toolkit to import data from Tivoli® Application
Dependency Discovery Manager 7.1 or later to Tivoli Business Service Manager.
The toolkit also provides the capability of reading discovery library books in
environments that do not have a Tivoli Application Dependency Discovery
Manager installation.
v If you are using Tivoli Business Service Manager and Netcool/Impact, use the

information in Installing the Discovery Library Toolkit in the Tivoli Business Service
Manager Installation Guide available in the Tivoli Business Service Manager 6.1.0.1
information center available from the following url, https://www.ibm.com/
developerworks/wikis/display/tivolidoccentral/
Tivoli+Business+Service+Manager.

v For a Netcool/Impact implementation that does not use Tivoli Business Service
Manager, the discovery library toolkit can be installed from the Netcool/Impact
launchpad. For the Tivoli Business Service Manager related information, the data
source must be configured to access the db2 database. This information is not
required for an Netcool/Impact installation.

Procedure
1. From the Netcool/Impact launchpad, select Install Discovery Library Toolkit.
2. Unzip DiscoveryLibraryToolkit.zip, to a local directory where you are

installing the database schema and or discovery library toolkit.
3. Navigate to the OS directory in which you are installing the discovery library

toolkit.

176 Netcool/Impact: Solutions Guide

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.common.doc/doc/t0021844.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.common.doc/doc/t0021844.html
https://www.ibm.com/developerworks/wikis/display/tivolidoccentral/Tivoli+Business+Service+Manager
https://www.ibm.com/developerworks/wikis/display/tivolidoccentral/Tivoli+Business+Service+Manager
https://www.ibm.com/developerworks/wikis/display/tivolidoccentral/Tivoli+Business+Service+Manager
https://www.ibm.com/developerworks/wikis/display/tivolidoccentral/Tivoli+Business+Service+Manager
https://www.ibm.com/developerworks/wikis/display/tivolidoccentral/Tivoli+Business+Service+Manager

4. Execute the setup-dbconfig-<osname>.bin file to install the database schema.
5. To install the discovery library toolkit, execute the setup-dltoolkit-

<osname>.binfile. Where osname is either Linux, Windows, Aix, or Solaris.

6. During the installation of the discovery library toolkit, there are options to
configure the Tivoli Business Service Manager data server. You can add any
values you want. These values are not used in Netcool/Impact.

Event Isolation and Correlation policies
The EventIsolationAndCorrelation project has a list of predefined polices that are
specific to Event Isolation and Correlation.

The following policies are in the EventIsolationAndCorrelation project and
support the Event Isolation and Correlation feature and must not be modified:
v EIC_IsolateAndCorrelate

v EIC_eventrule_config

v EIC_utils

v Opview_EIC_Analyze

v Opview_EIC_confSubmit

v Opview_EIC_configure

v Opview_EIC_requestHandler

Event Isolation and Correlation operator views
The EventIsolationAndCorrelation project has a list of predefined operator views
that are specific to Event Isolation and Correlation.
v EIC_Analyze shows the analysis of an event query.
v EIC_confSubmit supports the configuration of Event Isolation and

Configuration.
v EIC_configure configures the event rules for Event Isolation and Configuration.
v EIC_requestHandler supports the configuration of Event Isolation and

Configuration.

Configuring Event Isolation and Correlation data sources
All the Event Isolation and Correlation-related features are associated with the
project, EventIsolationAndCorrelation. Configure the necessary data sources, data
types, and data items for the event isolation and correlation.

Procedure
1. From the Tivoli Integrated Portal, click System Configuration > Event

Automation > Data Model.
2. From the project list, select the project EventIsolationAndCorrelation. A list of

data sources specific to the EventIsolationAndCorrelation feature display.
v EIC_alertsdb

v SCR_DB

v EventrulesDB

3. For each data source, update the connection information, user ID, and
password and save it.

4. Configure EIC_alertsdb to the object server where the events are to be
correlated and isolated.

Chapter 24. Event Isolation and Correlation 177

5. Configure SCR_DB to the Services Component Registry database.

Note: When configuring the Services Component Registry (SCR) data sources,
you must point the data sources to what is commonly called the SCR. The SCR
is a schema within the TBSM database that is created when you run the DB2
schema configuration step. The schema is called TBSMSCR. The database has a
default name of TBSM.

6. Configure EventRulesDB to the Services Component Registry database.

Configuring Event Isolation and Correlation data types
The EventIsolationAndCorrelation project has a list of predefined data types that
are specific to Event Isolation and Correlation. Except for the data type
EIC_alertquery which you must configure, the remaining data types are
preconfigured and operate correctly once the parent data sources are configured.

About this task

The following list shows the Event Isolation and Correlation data sources and their
data types:
v EIC_alertsdb

– EIC_alertquery

v SCR_DB

The following data types are used to retrieve relationship information from the
Services Component Registry.
– bsmidenties

– getDependents

– getRscInfo

v EventRulesDB

The following data types used by the database contain the end user
configuration for Event Isolation and Correlation.
– EVENTRULES

– EIC_PARAMETERS

Procedure
1. To configure the EIC_alertquery data type, right click on the data type and

select Edit.
2. The Data Type Name and Data Source Name are prepopulated.
3. The State check box is automatically selected as Enabled to activate the data

type so that it is available for use in policies.
4. Base Table: Specifies the underlying database and table where the data in the

data type is stored.
5. Click Refresh to populate the table. The table columns are displayed as fields

in a table. To make database access as efficient as possible, delete any fields
that are not used in policies. For information about adding and removing fields
from the data type see “SQL data type configuration window - Table
Description tab” on page 30.

6. Click Save to implement the changes.

178 Netcool/Impact: Solutions Guide

Creating, editing, and deleting event rules
How to create, edit, and delete an event rule for Event Isolation and Correlation.

Procedure
1. Select System Configuration > Event Automation > Event Isolation and

Correlation to open the Event Isolation and Correlation page tab.
2. Click the Create New Rule icon to create an Event Rule. While creating this

item the configure page has empty values for various properties.
3. Click the Edit the Selected Rule icon to edit the existing event rules.
4. Click the Delete the Selected Rule icon to delete an event rule from the system

and the list.

Creating an event rule
Complete the following fields to create an event rule.

Procedure
1. Event Rule Name: Specify the event rule name. The event rule name must be

unique across this system. When you select Edit or New if you specify an
existing event rule name, the existing event rule is updated. When you edit an
event rule and change the event rule name, a new event rule is created with
the new name.

2. Primary Event: Enter the SQL to be executed against the objectserver
configured in the data source EIC_alerts db. The primary event is the event
selected for analysis.
The primary event filter is used to identify if the event that was selected for
analysis has a rule associated with it. The primary event filter is also is used
to identify the object in the Services Component Registry database that has the
event associated with it. The object may or may not have dependent entities.
During analysis, the event isolation and correlation feature finds all the
dependent entities and there associated events.
For example, the primary event has 3 dependent or child entities and each of
these entities has 3 events has associated with it. In total there are 9
dependent events. Any of these secondary events could be the cause of the
primary event. This list of events is what is termed the list of secondary
events. The secondary event filter is used to isolate one or more of these
events to be the root cause of the issue.

3. Test SQL: Click Test SQL to test the SQL syntax specified in the primary
event. Modify the query so that only one row is returned. If there are multiple
rows, you can still configure the rule. However, during analysis only the first
row from the query is used to do the analysis.

4. Secondary Events: The text area is for the SQL to identify the dependent
events. When you specify the dependent events, you can specify variables or
parameters which can be substituted from the primary event information. The
variables are specified with the @ sign. For example, if the variable name is
dbname, it must be specified as @dbname@. An example is Identifier =
'BusSys Level 1.2.4.4' and Serial = @ser@. The variables are replaced
during the analysis step. The information is retrieved from the primary event
based on the configuration in the parameters table and displays in the
Variables Assignment section of the page.

5. Extract parameters: Click Extract Parameters to extract the variable name
between @ and populate the parameter table. Once the variable information is
extracted into the table, you can edit each column.

Chapter 24. Event Isolation and Correlation 179

a. Select the field against the regular expression you want to execute, and a
substitution value is extracted.

b. Enter the regular expression in the regular expression column. The regular
expression follows the IPL Syntax and is executed using the RExtract
function.

c. When the regular expression is specified, click Refresh to validate the
regular expression and check that the correct value is extracted. The table
contains the parameters.

6. Limit Analysis results to related configuration items in the Service
Component Registry: Select this check box if the analysis is to be limited to
related configuration items only. If the check box is not selected, the
dependent query will be returned.

7. Primary Event is a root cause event: Select this check box to identify whether
the primary event is the cause event and rest of events, are symptom only
events.

8. Event Field: Identifies the field in the event which contains the resource
identifier in the Services Component Registry. Select the field from the
drop-down menu that holds the resource identifier in the event.

9. Time window in seconds to correlate events: Add the time period the event
is to analyze. The default value is 600 seconds. The events that occurred 600
seconds prior to the primary event are analyzed.

10. Click Save Configuration to add the configuration to the backend database.
11. Now the event rules are configured, the event is ready to be analyzed. You

can view the event analysis in the in the EIC_Analyze page.

Configuring WebGUI to add a new launch point
Configure the WebGUI with a launch out context to launch the analysis page.

About this task

WebGUI can be configured to launch the analysis page. Refer to the procedure for
launch out integration described in the following URL, http://
publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp?topic=/
com.ibm.netcool_OMNIbus.doc_7.3.1/webtop/wip/task/
web_con_integrating.html.

The URL you need for Event Isolation and Correlation is
<TIPHOSTNAME>:<TIPPORT>/opview/displays/NCICLUSTER-EIC_Analyze.html. Pass the
serial number of the selected row for the event.

Note: NCICLUSTER is the name of the cluster configured during the installation of
Netcool/Impact. You must use the name of your cluster whatever it is, in the URL.
For example, in Tivoli Business Service Manager the default cluster name is
TBSMCLUSTER. To launch from Tivoli Business Service Manager, you would need to
use the following html file, TBSMCLUSTER-EIC_Analyze.html.

Launching the Event Isolation and Correlation analysis page
How to launch the Event Isolation and Correlation analysis page.

180 Netcool/Impact: Solutions Guide

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp?topic=/com.ibm.netcool_OMNIbus.doc_7.3.1/webtop/wip/task/web_con_integrating.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp?topic=/com.ibm.netcool_OMNIbus.doc_7.3.1/webtop/wip/task/web_con_integrating.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp?topic=/com.ibm.netcool_OMNIbus.doc_7.3.1/webtop/wip/task/web_con_integrating.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/index.jsp?topic=/com.ibm.netcool_OMNIbus.doc_7.3.1/webtop/wip/task/web_con_integrating.html

About this task

There are two ways to launch the Event Isolation and Correlation analysis page.
v Manually by using the webpage and Event Serial number.
v Using the launch out functionality on Active Event List (AEL) or Lightweight

Event List (LEL) from WebGUI in the Tivoli Enterprise Portal.

Procedure

Open a browser on Netcool/Impact. Use one of the following options:
v Point to <TIPServer>:<TIPPort>/opview/displays/NCICLUSTER-

EIC_Analyze.html?serialNum=<EventSerialNumber>. Where <TIPServer> and
<TIPPort>are the Netcool/Impact GUI Server and port and EventSerialNumber is
the serial number of the event you want to analyze. To launch the analysis page
outside of the AEL (Action Event List), you can add serialNum=<Serial Number>
as the parameter.

v The Event Isolation and Correlation analysis page can be configured to launch
from the Active Event List (AEL) or LEL (Lightweight Event List) within
WebGUI. For more information see, “Configuring WebGUI to add a new launch
point” on page 180. When you create the tool you have to specify only
<TIPSERVER>:port/opview/displays/NCICLSTER-EIC_Analyze.html. You do not
have to specify SerialNum as the parameter, the parameter is added by the AEL
tool.

Viewing the Event Analysis
View the analysis of an Event query in the EIC_Analyze page.

About this task

The input for the EIC_IsolateAndCorrelate policy is the serial number of the event
through the serialNum variable. The policy looks up the primary event to retrieve
the resource identifier. The policy then looks up the dependent events based on the
configuration. The dependent events are further filtered using the related
resources, if the user has chosen to limit the analysis to the related resources. Once
the serial number has been passed as the parameter in WebGUI, you can view the
event from the AEL or LEL and launch the Analyze page.

Procedure

Select the event from the AEL or LEL and launch the Analyze page. The
EIC_Analyze page contains three sections:
v Primary Event Information: shows the information on the selected event. This is

the event on which the event isolation and correlation analysis takes place.
v Correlated Events: shows information about the dependent events identified by

the tool. Dependant events are identified as the events that are associated with
the dependant child resources of the device or object that is associated with the
primary event. These events are displayed in the context of dependent resources
that were identified from the Services Component Registry.

v Event Rule process: shows the rule which was identified and processed when
this primary event was analyzed.

Chapter 24. Event Isolation and Correlation 181

182 Netcool/Impact: Solutions Guide

Appendix. Accessibility

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. These are the
major accessibility features you can use with Netcool/Impact when accessing it on
the IBM Personal Communications terminal emulator:
v You can operate all features using the keyboard instead of the mouse.
v You can read text through interaction with assistive technology.
v You can use system settings for font, size, and color for all user interface

controls.
v You can magnify what is displayed on your screen.

For more information about viewing PDFs from Adobe, go to the following web
site: http://www.adobe.com/enterprise/accessibility/main.html

© Copyright IBM Corp. 2006, 2011 183

184 Netcool/Impact: Solutions Guide

Glossary

This glossary includes terms and definitions for Netcool/Impact.

The following cross-references are used in this glossary:
v See refers you from a term to a preferred synonym, or from an acronym or

abbreviation to the defined full form.
v See also refers you to a related or contrasting term.

To view glossaries for other IBM products, go to www.ibm.com/software/
globalization/terminology (opens in new window).

A
assignment operator

An operator that sets or resets a value to a variable. See also operator.

B
Boolean operator

A built-in function that specifies a logical operation of AND, OR or NOT
when sets of operations are evaluated. The Boolean operators are &&, ||
and !. See also operator.

C
command execution manager

The service that manages remote command execution through a function in
the policies.

command line manager
The service that manages the command-line interface.

Common Object Request Broker Architecture (CORBA)
An architecture and a specification for distributed object-oriented
computing that separates client and server programs with a formal
interface definition.

comparison operator
A built-in function that is used to compare two values. The comparison
operators are ==, !=, <, >, <= and >=. See also operator.

control structure
A statement block in the policy that is executed when the terms of the
control condition are satisfied.

CORBA
See Common Object Request Broker Architecture.

D
database (DB)

A collection of interrelated or independent data items that are stored
together to serve one or more applications. See also database server.

© Copyright IBM Corporation 2005, 2011 © IBM 2006, 2011 185

http://www-306.ibm.com/software/globalization/terminology/
http://www-306.ibm.com/software/globalization/terminology/

database event listener
A service that listens for incoming messages from an SQL database data
source and then triggers policies based on the incoming message data.

database event reader
An event reader that monitors an SQL database event source for new and
modified events and triggers policies based on the event information. See
also event reader.

database server
A software program that uses a database manager to provide database
services to other software programs or computers. See also database.

data item
A unit of information to be processed.

data model
An abstract representation of the business data and metadata used in an
installation. A data model contains data sources, data types, links, and
event sources.

data source
A repository of data to which a federated server can connect and then
retrieve data by using wrappers. A data source can contain relational
databases, XML files, Excel spreadsheets, table-structured files, or other
objects. In a federated system, data sources seem to be a single collective
database.

data source adapter (DSA)
A component that allows the application to access data stored in an
external source.

data type
An element of a data model that represents a set of data stored in a data
source, for example, a table or view in a relational database.

DB See database.

DSA See data source adapter.

dynamic link
An element of a data model that represents a dynamic relationship
between data items in data types. See also link.

E
email reader

A service that polls a Post Office Protocol (POP) mail server at intervals for
incoming email and then triggers policies based on the incoming email
data.

email sender
A service that sends email through an Simple Mail Transfer Protocol
(SMTP) mail server.

event An occurrence of significance to a task or system. Events can include
completion or failure of an operation, a user action, or the change in state
of a process.

event processor
The service responsible for managing events through event reader, event

186 Netcool/Impact: Solutions Guide

listener and email reader services. The event processor manages the
incoming event queue and is responsible for sending queued events to the
policy engine for processing.

event reader
A service that monitors an event source for new, updated, and deleted
events, and triggers policies based on the event data. See also database
event reader, standard event reader.

event source
A data source that stores and manages events.

exception
A condition or event that cannot be handled by a normal process.

F
field A set of one or more adjacent characters comprising a unit of data in an

event or data item.

filter A device or program that separates data, signals, or material in accordance
with specified criteria. See also LDAP filter, SQL filter.

function
Any instruction or set of related instructions that performs a specific
operation. See also user-defined function.

G
generic event listener

A service that listens to an external data source for incoming events and
triggers policies based on the event data.

graphical user interface (GUI)
A computer interface that presents a visual metaphor of a real-world scene,
often of a desktop, by combining high-resolution graphics, pointing
devices, menu bars and other menus, overlapping windows, icons and the
object-action relationship. See also graphical user interface server.

graphical user interface server (GUI server)
A component that serves the web-based graphical user interface to web
browsers through HTTP. See also graphical user interface.

GUI See graphical user interface.

GUI server
See graphical user interface server.

H
hibernating policy activator

A service that is responsible for waking hibernating policies.

I
instant messaging reader

A service that listens to external instant messaging servers for messages
and triggers policies based on the incoming message data.

Glossary 187

instant messaging service
A service that sends instant messages to instant messaging clients through
a Jabber server.

IPL See Netcool/Impact policy language.

J
Java Database Connectivity (JDBC)

An industry standard for database-independent connectivity between the
Java platform and a wide range of databases. The JDBC interface provides
a call level interface for SQL-based and XQuery-based database access.

Java Message Service (JMS)
An application programming interface that provides Java language
functions for handling messages.

JDBC See Java Database Connectivity.

JMS See Java Message Service.

JMS data source adapter (JMS DSA)
A data source adapter that sends and receives Java Message Service (JMS)
messages.

JMS DSA
See JMS data source adapter.

K
key expression

An expression that specifies the value that one or more key fields in a data
item must have in order to be retrieved in the IPL.

key field
A field that uniquely identifies a data item in a data type.

L
LDAP See Lightweight Directory Access Protocol.

LDAP data source adapter (LDAP DSA)
A data source adapter that reads directory data managed by an LDAP
server. See also Lightweight Directory Access Protocol.

LDAP DSA
See LDAP data source adapter.

LDAP filter
An expression that is used to select data elements located at a point in an
LDAP directory tree. See also filter.

Lightweight Directory Access Protocol (LDAP)
An open protocol that uses TCP/IP to provide access to directories that
support an X.500 model and that does not incur the resource requirements
of the more complex X.500 Directory Access Protocol (DAP). For example,
LDAP can be used to locate people, organizations, and other resources in
an Internet or intranet directory. See also LDAP data source adapter.

link An element of a data model that defines a relationship between data types
and data items. See also dynamic link, static link.

188 Netcool/Impact: Solutions Guide

M
mathematic operator

A built-in function that performs a mathematic operation on two values.
The mathematic operators are +, -, *, / and %. See also operator.

mediator DSA
A type of data source adaptor that allows data provided by third-party
systems, devices, and applications to be accessed.

N
Netcool/Impact policy language (IPL)

A programming language used to write policies.

O
operator

A built-in function that assigns a value to a variable, performs an operation
on a value, or specifies how two values are to be compared in a policy. See
also assignment operator, Boolean operator, comparison operator,
mathematic operator, string operator.

P
policy A set of rules and actions that are required to be performed when certain

events or status conditions occur in an environment.

policy activator
A service that runs a specified policy at intervals that the user defines.

policy engine
A feature that automates the tasks that the user specifies in the policy
scripting language.

policy logger
The service that writes messages to the policy log.

POP See Post Office Protocol.

Post Office Protocol (POP)
A protocol that is used for exchanging network mail and accessing
mailboxes.

precision event listener
A service that listens to the application for incoming messages and triggers
policies based on the message data.

S
security manager

A component that is responsible for authenticating user logins.

self-monitoring service
A service that monitors memory and other status conditions and reports
them as events.

server A component that is responsible for maintaining the data model, managing
services, and running policies.

Glossary 189

service
A runnable sub-component that the user controls from within the graphical
user interface (GUI).

Simple Mail Transfer Protocol (SMTP)
An Internet application protocol for transferring mail among users of the
Internet.

Simple Network Management Protocol (SNMP)
A set of protocols for monitoring systems and devices in complex
networks. Information about managed devices is defined and stored in a
Management Information Base (MIB). See also SNMP data source adapter.

SMTP See Simple Mail Transfer Protocol.

SNMP
See Simple Network Management Protocol.

SNMP data source adapter (SNMP DSA)
A data source adapter that allows management information stored by
SNMP agents to be set and retrieved. It also allows SNMP traps and
notifications to be sent to SNMP managers. See also Simple Network
Management Protocol.

SNMP DSA
See SNMP data source adapter.

socket DSA
A data source adaptor that allows information to be exchanged with
external applications using a socket server as the brokering agent.

SQL database DSA
A data source adaptor that retrieves information from relational databases
and other data sources that provide a public interface through Java
Database Connectivity (JDBC). SQL database DSAs also add, modify and
delete information stored in these data sources.

SQL filter
An expression that is used to select rows in a database table. The syntax
for the filter is similar to the contents of an SQL WHERE clause. See also
filter.

standard event reader
A service that monitors a database for new, updated, and deleted events
and triggers policies based on the event data. See also event reader.

static link
An element of a data model that defines a static relationship between data
items in internal data types. See also link.

string concatenation
In REXX, an operation that joins two characters or strings in the order
specified, forming one string whose length is equal to the sum of the
lengths of the two characters or strings.

string operator
A built-in function that performs an operation on two strings. See also
operator.

190 Netcool/Impact: Solutions Guide

U
user-defined function

A custom function that can be used to organize code in a policy. See also
function.

V
variable

A representation of a changeable value.

W
web services DSA

A data source adapter that exchanges information with external
applications that provide a web services application programming interface
(API).

X
XML data source adapter

A data source adapter that reads XML data from strings and files, and
reads XML data from web servers over HTTP.

Glossary 191

192 Netcool/Impact: Solutions Guide

Index

A
accessibility viii, 183
activating 131
add-ons

Maintenance Window
Management 169, 170, 171, 172, 173

array 93
arrays 146

finding distinct values 147
finding the length 147

automation 2
automation engine 2

B
books

see publications vii, viii

C
Cache Settings tab

External Data Types editor 34
caching

count caching 40
data caching 39
query caching 39

CommandResponse 141
Configuration 159
configuring data sources 177
configuring data types 178
configuring services 2
context 95
conventions

typeface xii
core features 2
Creating a policy 160
Creating a service 162
Creating an event rule 179
Creating editing and deleting an event

rule 179
Custom Fields tab

internal data types editor 28
customer support x

D
data

adding 122, 123
deleting 125, 126
retrieving by filter 113
retrieving by key 119
retrieving by link 121
updating 124

data access 4
data caching 34
data items 14, 113

field variables 113
data model 9

components 13

data model (continued)
creating 11

data models
architecture 15
examples 15
setting up 14

data source
connection information 22

data sources
architecture 21
categories 19
creating 22
JMS 20
LDAP 20
Mediator DSA 20
overview 13, 19
setting up 21
SQL database 19

data type
auto-populating 35
data item ordering 36
getting name of structural

element 27
LDAP 24, 36
SQL 24

data type caching 34
data type field

description 27
display name 27
field name 26
format 26
ID 26

data types 13, 32
caching 39
categories 23
configuring internal 28
configuring LDAP 37
configuring SQL 30
configuring SQL data types

Table Description tab 30
data item filter 35
external 23
fields 25
internal 23, 24
internal data types editor 28
keys 27
mediator 24
Mediator DSA 38
overview 23
predefined 23
predefined internal 25
setting up 27
SQL 29
system 24
user-defined internal 25

database event listener
creating call spec 63
creating triggers 64, 66, 67, 68
editing listener properties file 61
editing nameserver.props file 60

database event listener (continued)
example triggers 69, 70, 71, 72, 73,

74, 75
granting database permissions 62
installing client files into Oracle 61
sending database events 63
setting up database server 59
writing policies 75, 76, 77

database functions
calling 126

DataItem (built-in variable) 113
DataItems (built-in variable) 113
development tool 1
directory names

notation xii
disability 183
dynamic links 41

link by filter 42
link by key 42
link by policy 43
setting up 43

E
education

See Tivoli technical training
enterprise service model

elements 16
environment variables

notation xii
event access 3
event container 107
event container variables

user-defined 108
event enrichment 5, 9
event fields

accessing 108
updating 108
variables 107

event gateway 10
event gateways 8
Event Isolation and Correlation 175, 176,

177, 178, 179
Event Isolation and Correlation operator

views 177
Event Isolation and Correlation

polices 177
event notification 7, 10
event querying

reading state file 53
event reader

actions 57
event locking 57
event matching 57
event order 58
mapping 56

event readers
architecture 51
configuration 53
process 52

event sources 45

© Copyright IBM Corp. 2006, 2011 193

event sources (continued)
Architecture 47
non-ObjectServer 45
ObjectServer 45

event state variables 108
EventContainer (built-in variable) 107
events 107

adding journal entries to 109
deleting 111
sending new 110

Exporting and Importing
ForImpactMigration 160

external data type
editor 30

external data types
configuring SQL 30
editor 32
LDAP 37
Mediator DSA 38

F
filters 114

LDAP filters 115
Mediator filters 116
SQL filters 114

fixes
obtaining ix

functions
user-defined 99

G
glossary 185

H
hibernating policy activator

configuration 88
hibernations 129

removing 132
retrieving 130
waking 131

I
If statements 96
Impact policy language 91
Installing Discovery Library Toolkit 176
Installing the DB2 data base 176
instant messaging 135
integration 5
internal data repository 20
internal data types

configuring 28
editor

Custom Fields tab 28
IPL

See Impact policy language

J
Jabber 135
JMS

data source 20

JRExec server
configuring 140
logging 140
overview 139
running commands 141
starting 139
stopping 140

K
key expressions 119
keys 119

multiple key expressions 119

L
Launching the Event Isolation and

Correlation analysis page 181
LDAP data sources

creating 20
LDAP External Data Type editor

LDAP Info tab 37
LDAP external data types 37
LDAP filters 115
links 14, 41

categories 41
dynamic 41
overview 41, 121
setting up 43
static 41

M
manuals

see publications vii, viii
Mediator DSA

data sources 20
data types 38

Mediator filters 116
modelling data 1
multiple key expressions 119
MWM

See Maintenance Window
Management

N
notation

environment variables xii
path names xii
typeface xii

O
ObjectServer event source

setting up 48
omnibus event listener

triggers 80, 84
using ReturnEvent 81, 85

omnibus event reader
event querying 52
event queueing 53

OMNIbus triggers 81
online publications

accessing viii

operator view EIC_Analyze 181
ordering publications viii
Overview 159, 175

P
PassToTBSM 159, 160, 162
path names

notation xii
policies

creating 11
hibernating 129

policy 9
language 91
retrieving data by filter 117, 118
retrieving data by key 120
retrieving data by link 121

policy activators
configuration 86

policy context 91
policy log 91

printing to 92
policy logger

configuration 86
policy scope 91
predefined actions 5
problem determination and resolution xi
projects 160
publications vii

accessing online viii
ordering viii

Q
query caching 34

S
scheduling policies 101

policy activator 101
schedules 101, 102, 103, 104

service
command execution manager 88
command line manager 89
database event listener 59, 62
hibernating policy activator 88
omnibus event listener 79, 83
OMNIbus event listener 79, 83
OMNIbus event reader 51, 53, 54
policy activator 85, 86
policy logger 86

service model
enterprise 16

services
overview 49
predefined 49
setting up 11
user-defined 50
working with 9, 49

Software Support
contacting x
overview ix
receiving weekly updates ix

solution
running 11

solution components 9

194 Netcool/Impact: Solutions Guide

solutions
setting up 10
types 9

SQL data types
adding a field to the table 32
configuring 30

SQL filters 114
static links 41
strings 143

changing the case 146
concatenating 143
encrypting and decrypting 146
extracting a substring 144
finding the length 143
replacing a substring 145
splitting into substrings 144
stripping a substring 145
trimming whitespace 145

Sybase data types
Setting the Exclude this field

option 32
system components 1

T
Table Description tab

SQL External Data Types editor 30
Tivoli Information Center viii
Tivoli technical training viii
training

Tivoli technical viii
typeface conventions xii
typical implementations 5

U
updating data 123
user-defined functions 99
uses 2
using Spid 81

V
variables

event field 107
event state 108
notation for xii
user-defined 92

Viewing Event Isolation and Correlation
results 180, 181

W
Web hosting model 17

elements 17
WebGUI 180
While statements 97
workflow analysis 8
working with data models 13
writing policies 2

X
x events in y time 10
X events in Y time 7

Index 195

196 Netcool/Impact: Solutions Guide

����

Printed in USA

SC23-8834-04

	Contents
	About this publication
	Intended audience
	Publications
	Netcool/Impact library
	Accessing terminology online
	Accessing publications online
	Ordering publications

	Accessibility
	Tivoli technical training
	Support for problem solving
	Obtaining fixes
	Receiving weekly support updates
	Contacting IBM Software Support
	Determining the business impact
	Describing problems and gathering information
	Submitting problems

	Conventions used in this publication
	Typeface conventions
	Operating system-dependent variables and paths

	Chapter 1. Getting started
	Software system
	Development tool
	Modeling data
	Configuring services
	Writing policies

	Automation engine
	Uses
	Core features
	Automation
	Event access
	Data access
	Third-party integration
	Predefined actions

	Typical implementations
	Event enrichment
	X events in Y time
	Event notification
	Event gateways

	Workflow analysis

	Chapter 2. Solutions
	Solution components
	Data models
	Working with services
	Policies

	Solution types
	Event enrichment solution
	X events in Y time solution
	Event notification solution
	Event gateway solution

	Setting up a solution
	Creating a data model
	Setting up services
	Creating policies

	Running a solution

	Chapter 3. Working with data models
	Data model components
	Data sources
	Data types
	Data items
	Links

	Setting up a data model
	Data model architecture
	Data model examples
	Enterprise service model
	Enterprise service model elements

	Web hosting model
	Web hosting model elements

	Chapter 4. Working with data sources
	Data sources overview
	Data source categories
	SQL database data sources
	LDAP data sources
	Mediator data sources
	Internal data repository
	JMS data source

	Data source architecture
	Setting up data sources
	Getting the connection information
	Creating data sources

	Chapter 5. Working with data types
	Data types overview
	Data type categories
	SQL database data types
	LDAP data types
	Mediator data types
	Internal data types
	System data types
	Predefined internal data types
	User-defined internal data types

	Data type fields
	ID
	Field name
	Format
	Display name
	Description

	Data type keys
	Setting up data types
	Getting the name of the structural element
	Configuring internal data types
	Internal data type configuration window

	SQL data types
	Configuring SQL data types
	SQL data type configuration window - Table Description tab
	SQL data type configuration window - adding and editing fields in the table
	SQL data type configuration window - Cache settings tab
	Auto-populating the data type fields
	Specifying a data item filter
	Specifying data item ordering

	LDAP data types
	Configuring LDAP data types
	LDAP data type configuration window - LDAP Info tab

	Mediator DSA data types

	Data type caching
	Configuring data caching
	Configuring query caching
	Count caching

	Chapter 6. Working with links
	Links overview
	Link categories
	Static links
	Dynamic links
	Link by filter
	Link by key
	Link by policy

	Setting up static links
	Setting up dynamic links

	Chapter 7. Working with event sources
	Event sources overview
	ObjectServer event sources
	Non-ObjectServer event sources
	Event source architecture
	Setting up ObjectServer event sources

	Chapter 8. Working with services
	Services overview
	Predefined services
	User-defined services

	Chapter 9. OMNIbus event reader service
	OMINbus event reader architecture
	OMNIbus event reader process
	Event querying
	Reading the state file

	Event queuing

	OMNIbus event reader configuration
	OMNIbus event reader service General Settings tab
	OMNIbus event reader service Event Mapping tab
	Mappings
	Event matching
	Actions
	Event locking
	Event order

	Chapter 10. Database event listener service
	Setting up the database server
	Editing the nameserver.props file for the database client
	Editing the listener properties file
	Installing the client files into Oracle
	Granting database permissions

	Database event listener service configuration window
	Sending database events
	Creating the call spec
	Creating triggers
	DML events triggers
	Insert events triggers
	Update and delete events triggers
	DDL events triggers
	System events triggers
	User events triggers
	Insert event trigger example
	Update event trigger example
	Delete event trigger example
	Before create event trigger example
	After create event trigger example
	Before alter event trigger example
	After alter event trigger example
	Before drop event trigger example
	After drop event trigger example
	Server startup event trigger example
	Server shutdown event trigger example
	Server error event trigger example
	Logon event trigger example
	Logoff event trigger example

	Writing database event policies
	Handling incoming database events
	Returning events to the database
	Populating the connection event fields
	Returning events to the database

	Chapter 11. OMNIbus event listener service
	Setting up the OMNIbus event listener service
	Using the OMNIbus event listener service
	Triggers
	Using the ReturnEvent function
	Using Spid to control which events get sent over from OMNIbus

	Chapter 12. Working with other services
	OMNIbus event listener service
	Setting up the OMNIbus event listener service
	Using the OMNIbus event listener service
	Triggers
	Using the ReturnEvent function

	Policy activator service
	Policy activator configuration
	Policy activator service configuration window

	Policy logger service
	Policy logger configuration
	Policy logger service configuration window

	Hibernating policy activator service
	Hibernating policy activator configuration
	Hibernating policy activator configuration window

	Command execution manager service
	Command execution manager service configuration window

	Command line manager service
	Command line manager service configuration window

	Chapter 13. Working with policies
	Policy language
	Policy log
	Policy context
	Policy scope
	Printing to the policy log
	User-defined variables
	Array
	Context
	If statements
	While statements
	User-defined functions
	Scheduling policies
	Running policies using the policy activator
	Running policies using schedules
	Creating a schedule data type
	Creating task data types
	Creating task data items
	Adding the tasks to the schedule
	Writing a top scheduler policy
	Creating a policy activator

	Chapter 14. Handling events
	Events overview
	Event containers
	EventContainer variable
	Event field variables
	Event state variables
	User-defined event container variables
	Accessing event fields
	Using the dot notation
	Using the @ notation

	Updating event fields
	Adding journal entries to events
	Assigning the JournalEntry variable

	Sending new events
	Deleting events
	Examples of deleting an incoming event from the event source

	Chapter 15. Handling data
	Data items
	Field variables
	DataItem and DataItems variables

	Retrieving data by filter
	Filters
	SQL filters
	LDAP filters
	Mediator filters

	Retrieving data by filter in a policy
	Example of retrieving data from an SQL database data type
	Example of retrieving data from an LDAP data type
	Example of looking up data from a Smallworld DSA Mediator data type

	Retrieving data by key
	Keys
	Key expressions
	Multiple key expressions

	Retrieving data by key in a policy
	Example of returning data from a data type using a single key expression
	Example of returning data by key using a multiple key expression

	Retrieving data by link
	Links overview
	Retrieving data by link in a policy
	Example of retrieving data by link

	Adding data
	Example of adding a data item to a data type

	Updating data
	Example of updating single data items
	Example of updating multiple data items

	Deleting data
	Example of deleting single data items
	Example of deleting data items by filter
	Example of deleting data items by item

	Calling database functions

	Chapter 16. Handling hibernations
	Hibernations overview
	Hibernating a policy
	Examples of hibernating a policy

	Retrieving hibernations
	Retrieving hibernations by action key search
	Retrieving hibernations by filter

	Waking a hibernation
	Retrieving the hibernation
	Calling ActivateHibernation
	Example

	Removing hibernations

	Chapter 17. Sending e-mail
	Sending e-mail overview
	Sending an e-mail

	Chapter 18. Instant messaging
	Netcool/Impact IM
	Netcool/Impact IM components
	Netcool/Impact IM process
	Message listening
	Message sending

	Setting up Netcool/Impact IM
	Writing instant messaging policies
	Handling incoming messages
	Sending messages
	Example

	Chapter 19. Executing external commands
	External command execution overview
	JRExec server
	Overview of the JRExec server
	Starting the JRExec server
	Stopping the JRExec server
	The JRExec server configuration properties
	JRExec server logging
	Running commands using the JRExec server

	Using CommandResponse

	Chapter 20. Handling strings and arrays
	Handling strings
	Concatenating strings
	Finding the length of a string
	Splitting a string into substrings
	Extracting a substring from another string
	Extracting a substring using the word position
	Extracting a substring using regular expression matching

	Replacing a substring in a string
	Stripping a substring from a string
	Trimming white space from a string
	Changing the case of a string
	Encrypting and decrypting strings

	Handling arrays
	Finding the length of an array
	Finding the distinct values in an array

	Chapter 21. Event enrichment tutorial
	Tutorial overview
	Understanding the Netcool/Impact installation
	Understanding the business data
	Analyzing the workflow
	Creating the project
	Setting up the data model
	Creating the event source
	Creating the data sources
	Creating the data types
	Creating a dynamic link
	Reviewing the data model

	Setting up services
	Creating the event reader
	Reviewing the services

	Writing the policy
	Looking up device information
	Looking up business departments
	Increasing the alert severity
	Reviewing the policy

	Running the solution

	Chapter 22. Configuring the Impact policy PasstoTBSM
	Overview
	Configuration
	Exporting and Importing the ForImpactMigration project
	Creating a policy
	Creating a policy activator service
	Create a new template and rule to collect weather data
	Create the CityHumidity rule for the CityWeather template
	Create a city service
	Customizing a Service Tree portlet
	Adding a custom Services portlet to a freeform page

	Chapter 23. Maintenance Window Management
	Activating MWM in a Netcool/Impact cluster
	Configure the MWM_Properties policy
	Configuring MWMActivator service properties
	Logging on to Maintenance Window Management
	About MWM maintenance windows
	Creating a one time maintenance window
	Creating a recurring maintenance window
	Viewing maintenance windows
	Maintenance Window Management and other Netcool/Impact policies

	Chapter 24. Event Isolation and Correlation
	Overview
	Installing Netcool/Impact and the DB2 database
	Installing the Discovery Library Toolkit
	Event Isolation and Correlation policies
	Event Isolation and Correlation operator views
	Configuring Event Isolation and Correlation data sources
	Configuring Event Isolation and Correlation data types
	Creating, editing, and deleting event rules
	Creating an event rule

	Configuring WebGUI to add a new launch point
	Launching the Event Isolation and Correlation analysis page
	Viewing the Event Analysis

	Appendix. Accessibility
	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	S
	U
	V
	W
	X

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	S
	T
	U
	V
	W
	X

